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Abstract

The asset pricing literature has produced hundreds of potential risk factors. Organizing this

“zoo of factors” and distinguishing between useful, useless, and redundant factors require econo-

metric techniques that can deal with the curse of dimensionality. We propose a model-selection

method that allows us to systematically evaluate the contribution to asset pricing of any new

factor, above and beyond what is explained by a high-dimensional set of existing factors. Our

procedure selects the best parsimonious model out of the large set of existing factors, and uses it

as the control in making statistical inference about the contribution of new factors. Our inference

allows for model selection mistakes, and is therefore more reliable in finite sample. We derive the

asymptotic properties of our test and apply it to a large set of factors proposed in the literature.

We show that despite the fact that hundreds of factors have been proposed in the last 30 years,

some recent factors – like profitability – have statistically significant explanatory power in addi-

tion to existing ones. We confirm the effectiveness of our procedure to discriminate factors in a

recursive and out-of-sample experiment, and show that it results in a parsimonious model with a

small number of factors and high cross-sectional explanatory power, even as the pool of candidate

factors has expanded dramatically.
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1 Introduction

The search for factors that explain the cross section of expected stock returns has produced hundreds

of potential factor candidates, as noted by Cochrane (2011) and most recently by Harvey et al. (2015),

McLean and Pontiff (2016), and Hou et al. (2016). A fundamental task facing the asset pricing field

today is to bring more discipline to this “zoo” of factors. In particular, how can we discriminate

truly useful pricing factors from redundant and useless factors that appear significant due to data

mining? How do we judge whether a new factor adds explanatory power for asset pricing, relative

to the existing set of hundreds of factors the literature has so far produced?

This paper provides a framework for systematically evaluating the contribution of individual

factors relative to the myriad of existing factors the literature has proposed, and conducting appro-

priate statistical inference in this high-dimensional setting. In particular, we show how to estimate

and test the marginal importance of any factor gt in pricing the cross section of expected returns

beyond what is explained by a high-dimensional set of potential factors ht – where gt and ht could be

tradable or non-tradable factors. We assume that the true asset pricing model is approximately low-

dimensional; however, in addition to relevant asset pricing factors, gt and ht include redundant ones

that add no explanatory power to the other factors, as well as useless ones that have no explanatory

power at all. Selecting the relevant factors from ht to conduct proper inference on the contribution

of gt is the aim of this paper.

When ht consists of a small number of factors, testing whether gt is useful in explaining asset

prices while controlling for the factors in ht is straightforward: it simply requires estimating the

loadings of the stochastic discount factor on gt and ht (i.e. the price of risk of these factors), and

testing whether the price of risk of gt is different from zero (see Cochrane (2009)). This exercise not

only tells us whether gt is useful for pricing the cross-section, but it also reveals how shocks to gt

affect marginal utility (which has a direct economic interpretation).

When ht consists of potentially hundreds of factors, however, standard statistical methods to

estimate and test risk prices become infeasible or result in poor estimates and invalid inference,

because of the curse of dimensionality. While dimension-reduction techniques (like LASSO) can

be useful in (asymptotically) selecting the right model and reducing the dimensionality of ht, they

produce erroneous inference unless appropriate econometric methods are used to explicitly account

for the model selection mistakes that can occur in any finite sample (see Chernozhukov et al. (2015)).

The methodology we propose in this paper marries these new econometric methods (in particular

the double-selection LASSO method of Belloni et al. (2014b)) with two-pass regressions like Fama-

MacBeth to specifically estimate risk prices in a high-dimensional setting. Without relying on prior

knowledge about which factors to include as controls among the hundreds in ht, our procedure
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selects factors that are either useful in explaining the cross-section of expected returns or are useful

to mitigate the omitted variable bias problem. We show that including both types of factors as

controls is essential to conduct correct inference on the price of risk of gt.

We apply our methodology to a large set of factors proposed in the last 30 years. We collect and

construct a factor data library, containing more than 100 risk factors, that includes both tradable

and nontradable factors. We perform a variety of empirical exercises to illustrate the importance

of taking model selection mistakes into account when conducting inference about risk prices and

assessing the importance of new factors. We start by evaluating the marginal contribution of recent

factors, proposed in the last 5 years, to the large set of factors proposed until 2010. The new

factors include – among others – the two new factors introduced by Fama and French (2015) and

two intermediary-based factors from He et al. (2016) and Adrian et al. (2014). Given that the

set of potential control factors includes more than a hundred factors, one might wonder whether

in practice any additional factor could make any significant contribution to explaining the cross-

section of expected returns. We show that indeed some of these new factors (like profitability) have

significant marginal explanatory power for expected returns.

We also confirm the ability of our procedure to select useful factors through a recursive exercise.

In each year since 1994, we consider all factors introduced in that year and test whether they add

significant explanatory power for the cross-section of expected returns to the set of factors available

up to that point. We then verify that the factors that are deemed to be useful by our test when they

were introduced, actually appear to be useful in pricing assets in later years.

Over time, the total number of factors available has increased. We can therefore use our recursive

exercise to also study how the selected model evolves over time, as more and more factors are added

to the set ht (from around 20 in 1994 to over 100 in 2016). Two results emerge. First, while the

number of factors is not determined ex-ante, but is chosen optimally, it is remarkably stable over

time. Despite the fact that the number of potential factors increased by a factor of 5 over the last

twenty years, the number of factors selected by the model increases modestly (from 10 in 1994 to 18

in 2016), and in fact the number of significant factors among those is close to constant at around 5

for the entire period. At the same time, the cross-sectional R2 achieved by the selected model has

improved as well, an indication that new research has indeed discovered better factors over time, and

our procedure successfully selects them. This result is consistent with the finding that even now,

with an existing pool of hundreds of factors, we still find significant contributions from several of the

newest factors.

The stability of the number of selected factors over time is also striking when compared to the

number of factors that seem to command a significant risk premium in the literature (documented for

example by Harvey et al. (2015)). Of the around 100 factors that we examine, about half of them have
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a risk premium significant with a t-stat above 2, and about one sixth have a risk premium significant

with a t-stat above 3. These fractions of significant over total factors have been remarkably stable

over time. We would therefore expect that going forward, as more and more potential factors are

introduced, an increasing number of them will carry a significant risk premium, even using the higher

significance level imposed by requiring a t-stat of 3. This highlights the importance of evaluating a

factor based on its contribution relative to the existing factors (risk price, which we estimate in our

paper), rather than its risk premium (which does not capture the marginal contribution of a factor

to explaining asset prices, but simply the correlation with the stochastic discount factor): most of

the new factors with positive risk premia are simply redundant relative to the existing factors. Our

procedure only keeps, over time, the most relevant factors, and weeds out those that do not contain

any additional information to explain asset prices, thus naturally bringing discipline to this growing

set of factors.

Of course, the existing literature has routinely attempted to evaluate the contribution of new

factors relative to some benchmark model, typically by estimating and testing the alpha of a regres-

sion of the new factor onto existing factors (for example, Barillas and Shanken (2015) and Fama and

French (2016)). Our methodology differs from the existing procedures in several ways. First, we do

not select the control model in an ad-hoc way (say, using the three Fama-French factors), but rather

we select the control model that best explains the cross-section of returns; in addition, our procedure

aims to minimize the potential omitted variable bias while enhancing statistical efficiency. Second,

we not only test whether the factor of interest gt is useful in explaining asset prices, but we also

estimate its role in driving marginal utility (its coefficient in the stochastic discount factor, or risk

price). Third, we handle both traded and non-traded factors. Lastly, our inference is valid given a

large dimensional set of controls and test assets in addition to an increasing span of time series.

The methodology we propose builds on the double-selection technique of Belloni et al. (2014b)

(that was proposed for linear treatment effect models), combining it with two-step cross-sectional

regressions. Our procedure first uses a double-selection method to select “control” factors from ht,

and then estimates the risk price of gt from cross-sectional regressions that include gt and the selected

factors from ht.

As the name implies, the “double-selection” of factors from ht happens in two stages; both

stages are crucial to obtain correct inference on gt. A first set of factors is selected from ht based on

their pricing ability for the cross-section of returns. Factors that appear to contribute little to pricing

assets are excluded from the set of controls. This first step has the advantage of selecting factors

based on their usefulness in pricing the cross-section of assets, as opposed to other commonly-used

selection methods (like principal components) that select factors based on their ability to explain

the time-series variation of returns.
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This first step is, however, not sufficient to ensure valid inference on gt. This is because the

first selection may exclude some factors that have small risk prices in sample, but whose covariance

with returns are nonetheless highly cross-sectionally correlated with that of gt. That is, in any finite

sample, we can never be sure to have selected the correct model. Any omission of relevant factors

due to finite-sample model selection errors distorts the inference on the risk price of gt, leading to

incorrect inference on the significance – and even the sign – of gt. This is a well-known problem with

model selection methods, see, e.g., Leeb and Pötscher (2005), which has spurred a large econometrics

literature on uniformly valid inference, and has important consequences for asset pricing tests that

require selecting a model in large dimensional settings.

Instead, we demonstrate that to obtain correct asymptotic inference for gt it is crucial to include

a second stage of factor selection. The second step adds to the set of controls additional factors whose

covariances with returns are highly correlated in the cross-section with the covariance between returns

and gt. Intuitively, we want to make sure to include even factors with small in-sample risk prices,

if omitting them may still induce a large omitted variable bias due to the cross-sectional correlation

between their risk exposures and the risk exposures to gt. This procedure takes explicitly into account

the fact that model selection procedures can never guarantee that the model selected from ht is the

true one in any finite sample.

After selecting the set of controls from ht (including all factors selected in either of the two

selection stages), we conduct inference on gt by estimating the coefficient of a standard two-pass

regression using gt and the selected small number of control factors from ht. This post-selection

estimation step is also useful to remove biases arising from regularization in any LASSO procedure,

see, e.g., Friedman et al. (2009). We then conduct asymptotic inference on the risk price of gt using

a central limit result we derive in this paper. We show by simulation that our estimator performs

well in finite samples, and substantially outperforms alternative estimators.

Our paper builds on several strands of the asset pricing and econometrics literature. First

and most directly, the paper is related to the recent literature on the high dimensionality of cross-

sectional asset-pricing models. Green et al. (2016) test 94 firm characteristics through Fama-Macbeth

regressions and find that 8-12 characteristics are significant independent determinants of average

returns. McLean and Pontiff (2016) use an out-of-sample approach to study the post-publication

bias of 97 discovered risk anomalies. Harvey et al. (2015) adopt a multiple testing framework to re-

evaluate past research and provide a new benchmark for current and future factor fishing. Following

on this multiple-testing issue, Harvey and Liu (2016) provide a bootstrap technique under factor

orthogonalization. Recently, Freyberger et al. (2017) propose a group LASSO procedure to select

characteristics and to estimate how they affect expected returns nonparametrically.

The paper naturally builds on a large literature that has identified a variety of pricing factors,
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starting with the CAPM of Sharpe (1964) and Lintner (1965). Among the factors that theory has

proposed, some are based on economic theory (for example, Breeden (1979), Chen et al. (1986),

Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Yogo (2006), Pástor and Stambaugh

(2003), Adrian et al. (2014), He et al. (2016)); others have been constructed using firm characteristics,

like Fama and French (1993, 2015), Carhart (1997) and Hou et al. (2014). Excellent reviews of cross-

sectional asset pricing include Campbell (2000), Lewellen et al. (2010), Goyal (2012), and Nagel

(2013).

We also build upon the econometrics literature devoted to the estimation and testing of asset

pricing models using two-pass regressions, dating back to Jensen et al. (1972) and Fama and MacBeth

(1973). Over the years, the econometric methodologies have been refined and extended; see for

example Ferson and Harvey (1991), Shanken (1992), Jagannathan and Wang (1996), Welch (2008),

and Lewellen et al. (2010). These papers, along with the majority of the literature, rely on large T

and fixed n asymptotic analysis for statistical inference and only deal with models where all factors

are specified and observable. Bai and Zhou (2015) and Gagliardini et al. (2016) extend the inferential

theory to the large n and large T setting, which delivers better small-sample performance when n is

large relative to T . Connor et al. (2012) use semiparametric methods to model time variation in the

risk exposures as function of observable characteristics, again when both n and T are large. Giglio

and Xiu (2016) rely on a similar large n and large T analysis, but estimate risk premia (not risk

prices as in this paper) in the case where not all relevant pricing factors are observed. Raponi et al.

(2016) on the other hand study the ex-post risk premia using large n and fixed T asymptotics. For

a review of this literature, see Shanken (1996), Jagannathan et al. (2010), and more recently, Kan

and Robotti (2012).

A more recent literature has focused on various pitfalls in estimating and testing linear factor

models. For instance, ignoring model misspecification and identification-failure leads to an overly

positive assessment of the pricing performance of spurious (Kleibergen (2009)) or even useless factors

(Kan and Zhang (1999a,b); Jagannathan and Wang (1998)), and biased risk premia estimates of true

factors in the model. It is therefore more reliable to use inference methods that are robust to model

misspecification (Shanken and Zhou (2007); Kan and Robotti (2008); Kleibergen (2009); Kan and

Robotti (2009); Kan et al. (2013); Gospodinov et al. (2013); Kleibergen and Zhan (2014); Gospodinov

et al. (2014b); Bryzgalova (2015); Burnside (2016)). We study a different model misspecification form

– priced factors omitted from the model, which would also bias the estimates for the observed factors.

Last but not least, our paper is related to a large statistical and machine learning literature on

variable selection and regularization using LASSO (least absolute shrinkage and selection operator)

and post selection inference. For theoretical properties of LASSO, see Bickel et al. (2009), Mein-

shausen and Yu (2009), Tibshirani (2011), Wainwright (2009), Zhang and Huang (2008), Belloni and
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Chernozhukov (2013). For post selection inference method, see, e.g., Belloni et al. (2012), Belloni

et al. (2014b), and review articles by Belloni et al. (2014a) and Chernozhukov et al. (2015). Our

asymptotic results are new to the existing literature from two important aspects. First, our setting

is a large panel regression with a large number of factors (p), in which both cross-sectional and

time-series dimensions (n and T ) increase. Second, our procedure in fact selects covariances between

factors and returns, which are contaminated by estimation errors, rather than factors themselves

that are immediately observable.

The rest of the paper is organized as follows. In Section 2, we setup the model, present our

methodology, and develop relevant statistical inference. Section 3 provides Monte Carlo simulations

that demonstrate the finite sample performance of our estimator. In Section 4, we show several

empirical applications of the procedure. Section 5 concludes. The appendix contains technical

details.

2 Methodology

2.1 Model Setup

We set up the model with a linear specification of the stochastic discount factor (SDF):

mt := γ−10 − γ
−1
0 λᵀvvt := γ−10 (1− λᵀggt − λ

ᵀ
hht), (1)

where γ0 is the zero-beta rate, gt is a d × 1 vector of factors to be tested, and ht is a p × 1 vector

of potentially confounding factors. Both gt and ht are de-meaned, i.e., they are factor innovations

satisfying E(gt) = E(ht) = 0. λg and λh are d× 1 and p× 1 vectors of parameters, respectively. We

refer to λg and λh as the risk prices of the factors gt and ht.

Our goal here is to make inference on the risk prices of a small set of factors gt while accounting

for the explanatory power of a large number of existing factors, collected in ht. These factors are not

necessarily all useful factors: their corresponding risk prices may be equal to zero. This framework

potentially includes completely useless factors (factors that have a risk price of zero and whose

covariances with returns are uncorrelated with the covariances of returns and the SDF), as well as

redundant factors (factors that have a price of zero but whose covariances with returns are correlated

in the cross-section with the covariance between returns and the SDF).

We want to estimate and test the risk price of gt for two reasons. First, it directly reveals

whether gt drives the stochastic discount factor after controlling for ht, i.e., whether gt contains

additional pricing information relative to ht (Cochrane (2009)), or whether it is instead redundant or

useless. Second, the coefficient λg indicates how gt affects marginal utility. For example, a positive

sign for λg tells us that states where gt is low are high-marginal-utility states. The estimate of λg can

therefore be used to test predictions of asset pricing models about how investors perceive gt shocks.
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In addition to gt and ht, we observe a n× 1 vector of test asset returns, rt. Because of (1), the

expected return satisfies:

E(rt) = ιnγ0 + Cvλv = ιnγ0 + Cgλg + Chλh, (2)

where ιn is a n × 1 vector of 1s, Ca = Cov(rt, at), for a = g, h, or v. Furthermore, we assume that

the dynamics of rt follow a standard linear factor model:

rt = E(rt) + βggt + βhht + ut, (3)

where βg and βh are n × d and n × p factor loading matrices, ut is a n × 1 vector of idiosyncratic

components with E(ut) = 0 and Cov(ut, vt) = 0.

Equation (2) represents expected returns in terms of (univariate) covariances with the factors,

multiplied by risk prices λg and λh. An equivalent representation of expected return can be obtained

in terms of multivariate betas:

E(rt) = ιnγ0 + βgγg + βhγh, (4)

where βg and βh are the factor exposures (i.e. multivariate betas) and γg and γh are the risk premia

of the factors. Risk prices λ and risk premia γ are directly related through the covariance matrix of

the factors, but they differ substantially in their interpretation. In this paper, we aim to estimate the

risk prices of the factors gt, not their risk premia. The risk premium γ of a factor tells us whether

investors are willing to pay to hedge a certain risk factor, but it does not tell us whether that factor

is useful in pricing the cross-section of returns. For example, a factor could command a nonzero

risk premium without even appearing in the SDF, by simply being correlated with the true factors.

As discussed extensively in Cochrane (2009), to understand whether a factor is useful in pricing the

cross-section of asset, we want to study its risk price λ, not its risk premium γ.

Since the link between risk prices and risk premia depends on the covariances among factors, it

is useful to write explicitly the the projection of gt on ht as:

gt = ηht + zt, where Cov(zt, ht) = 0. (5)

Finally, for the estimation of λg, it is essential to characterize the cross-sectional dependence between

Cg and Ch, so we write the cross-sectional projection of Cg onto Ch as:

Cg = ιnξ
ᵀ + Chχ

ᵀ + Ce, (6)

where ξ is a d × 1 vector, χ is a d × p matrix, Ce is a n × d matrix of cross-sectional regression

residuals.1

1For the sake of clarity and simplicity, we assume that the set of testing assets used is not sampled randomly but

deterministically, so that these covariances and loadings are treated as non-random. This is without loss of generality

as their sampling variation does not affect the first order asymptotic inference. In contrast, Gagliardini et al. (2016)

consider random loadings as a result of a random sampling scheme from a continuum of assets.
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2.2 Challenges with Standard Two-Pass Methods

Using two-pass regressions to estimate empirical asset pricing models dates back to Jensen et al.

(1972) and Fama and MacBeth (1973). Partly because of its simplicity, this approach is widely used

in practice. There are two steps in the procedure, including one asset-by-asset time series regression

to estimate individual factor loadings βs, and one cross-sectional regression of expected returns on

the estimated factor loadings to estimate risk premia γ.

Since our parameter of interest is the risk price of gt, λg, instead of the risk premium, the first

step needs to be modified to use covariances between returns and factors rather than factor betas.

In a low-dimensional setting, this method would work smoothly for the estimation of λg, as pointed

out by Cochrane (2009).

Nevertheless, the empirical asset pricing literature has created hundreds of factors, which can

include useless and redundant factors in addition to useful factors; all and only the useful ones should

be used as controls in estimating the risk price of newly proposed factors gt and testing for their

contribution to asset pricing (λg). Over time, the number of potential factors p discovered in the

literature has increased to the same scale as, if not greater than, n or T . In such a scenario, the

standard cross-sectional regression with all factor covariances included is at best highly inefficient,

because the optimal convergence rate in this regression is p1/2n−1/2. Moreover, if p is smaller than

n yet of the same scale, asymptotic inference fails entirely to converge. When p is larger than n, the

regression approach becomes infeasible, because the number of parameters exceeds the sample size.

Standard methodologies therefore do not work well if at all in a high-dimensional setting due to

the curse of dimensionality, so that dimension-reduction and regularization techniques are inevitable

for valid inference. The existing literature has so far employed ad-hoc solutions to this dimensionality

problem. To test a new factor, it is common to cherry-pick a handful of control factors, such as the

prominent Fama-French three factors, effectively imposing an assumption that the selected model

is the true one (and is not missing any additional factors). However, this assumption is clearly

unrealistic: these standard models have generally poor performance in explaining the large available

cross-section of expected returns, indicating that omitted factors are likely to be present in the data.

The stake of selecting an incorrect model is high, as it leads to model misspecification and omitted

variable bias when useful factors are not included (Giglio and Xiu (2016)); relatedly, including useless

factors may also lead to incorrect inference (Kan and Zhang (1999b)).

2.3 A Regularized Two-Pass Regression Approach

This issue is not unique to asset pricing. To address it, we need to impose a certain low dimensional

structure in the model. In this paper, we impose a sparsity assumption, that has a natural economic
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interpretation and has recently been studied at length in the machine learning literature. Imposing

sparsity in our setting means that there exists a relatively small number of factors in ht, whose linear

combinations along with gt yield the SDF mt, and which alone are relevant for the estimation of

λg. More specifically, sparsity in our setting means that there are only s non-zero entries in λh, and

in each row of η and χ, where s is small relative to n and T . The sparsity assumption allows us

to extract the most influential factors, while making valid inference on the parameters of interest,

without prior knowledge or perfect recovery of the useful factors that determine mt.

To leverage sparsity, Tibshirani (1996) proposes the so called LASSO estimator, which incor-

porates into the least square optimization a penalty function on the L1 norm of parameters, which

leads to an estimator that has many zero coefficients in the parameter vector. The LASSO estimator

has appealing properties in particular for prediction purposes. With respect to parameter estima-

tion, there is a well-documented finite sample bias associated with the non-zero coefficients of the

LASSO estimate because of the regularization. For these reasons, Belloni and Chernozhukov (2013)

and Belloni et al. (2012) suggest the use of a “Post-LASSO” estimator, which has more desirable

statistical properties. The Post-LASSO estimator runs LASSO as a model selector, and then re-fits

the least square problem without penalty, using only variables that have non-zero coefficients in the

first step.

In the asset pricing context, the LASSO and Post-LASSO procedures could theoretically be used

to select the factors in ht with non-zero risk prices as controls for gt, therefore accounting for the

possibility that ht contains useless or redundant factors. In fact, when the number of factors is large,

LASSO and Post-LASSO will asymptotically recover the true model under certain assumptions.

Unfortunately, these procedures are not appropriate when we want to conduct inference about

risk prices (for example, about the price of gt as in our context). This is because in any finite sample,

we can never be sure that LASSO or Post-LASSO will select the correct model from ht. But if the

model is misspecified, i.e., important factors from ht are excluded, inference about risk prices will

be affected by an omitted variable bias. Therefore, standard LASSO or Post-LASSO regressions will

generally yield erroneous inference about risk prices, as we confirm in simulations in Section 3.

This omitted variable bias due to model selection mistakes is exacerbated if risk exposures to the

omitted factors are highly correlated in the cross-section with the exposures to gt (even though these

factors may have a small in-sample price of risk, which is why they may be omitted by LASSO). We

will therefore need to make sure that these factors are included in the set of controls even if LASSO

would suggest excluding them. Note that this problem is not unique to high dimensional problems,

see, e.g., Leeb and Pötscher (2005), but it is arguably more severe in such a scenario because model

selection is inevitable.
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To guard against omitted variable biases due to selection mistakes, we therefore adopt a double

selection strategy in the same spirit as what Belloni et al. (2014b) propose for estimating the treat-

ment effect. The first selection searches for factors in ht whose covariances with returns are useful

for explaining the cross-section of expected returns. A second selection is then added to search for

factors in ht potentially missed from the first step, but that, if omitted, would induce a large omitted

variable bias. Factors excluded from both stages of the double selection procedure must have small

risk prices and have covariances that correlate only mildly in the cross-section with the covariance

between factors of interest gt and returns – these factors can be excluded with minimal omitted

variable bias. This strategy results in a parsimonious model that minimizes the omitted factor bias

ex-ante when estimating and testing λg.

The regularized two-pass estimation proceeds as follows:

(1) Variable Selection

(1.a) Run a cross-sectional LASSO regression of average returns on sample covariances between

factors in ht and returns:2

min
γ,λ

{
n−1

∥∥∥r̄ − ιnγ − Ĉhλ∥∥∥2 + τ0n
−1‖λ‖1

}
, (7)

where Ĉh = Ĉov(rt, ht) = T−1R̄H̄ᵀ.3 This step selects among the factors in ht those

that best explain the cross-section of expected returns. Denote {Î1} as the set of indices

corresponding to the selected factors in this step.

(1.b) Run d time-series LASSO regressions using the jth factor in gt sequentially on all factors

in ht for j = 1, · · · , d:

min
ξj ,χj,·

{
n−1

∥∥∥(Ĉg,·,j − ιnξj − Ĉhχᵀ
j,·)
∥∥∥2 + τjn

−1‖χᵀ
j,·‖1

}
. (8)

This step identifies factors whose exposures are highly correlated to the exposures to gt

in the cross-section. This is the crucial second step in the double-selection algorithm,

that identifies factors that may be missed by the first step but that may still induce

large omitted variable bias in the estimation of λg if omitted, due to their covariance

properties. Denote {Î2,j} as the set of indices corresponding to the selected factors in the

jthe regression, and Î2 =
⋃d
j=1 Î2,j .

(2) Post Selection Estimation

2We use ‖A‖ and ‖A‖1 to denote the operator norm and the L1 norm of a matrix A = (aij), that is,
√
λmax(AᵀA),

maxj
∑
i |aij |, where λmax(·) denotes the largest eigenvalue of a matrix.

3For any matrix A = (a1 : a2 : . . . aT ), we write ā = T−1 ∑T
t=1 at, Ā = A− ιᵀT ā.
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Run an OLS cross-sectional regression using covariances between the selected factors from both

steps and average returns.

(γ̂0, λ̂g, λ̂h) = arg min
γ0,λg ,λh

{∥∥∥r̄ − ιnγ0 − Ĉgλg − Ĉhλh∥∥∥2 : λh,j = 0, ∀j /∈ Î = Î1
⋃
Î2

}
. (9)

We refer to this procedure as a double-selection approach, as opposed to the single-selection approach

which only involves (1.a) and (2).

The LASSO estimators involve only convex optimizations, so that the implementation is quite

fast. There are existing packages in statistical softwares such as R and Matlab which implement

LASSO using efficient algorithms. It is worth mentioning that other variable selection procedures

are also applicable. For instance, the second selection (1.b) can instead adopt group-LASSO, e.g.,

Yuan and Lin (2006), which requires that the selected factors from ht matter for all factors in gt,

which is more aggressive in terms of factor exclusion than the procedure we recommend here. Also,

either (1.a) or (1.b) can be replaced by other machine learning methods such as regression tree,

random forest, boosting, and neural network as shown in Chernozhukov et al. (2016) for treatment

effect estimation.

In our LASSO regression, there is a nonnegative regularization parameter, e.g., τj (j = 0, 1, . . . , d),

to control the level of penalty. A higher τj indicates a greater penalty and hence results in a smaller

model. The optimization becomes a least-squares problem if τj is 0. To determine the regulariza-

tion parameter, we adopt the most commonly used 10-fold cross-validation, BIC, and AIC, see e.g.,

Friedman et al. (2009). BIC tends to select a more parsimonious model than the cross-validation

and AIC.

We can also give different weights to λh. Belloni et al. (2012) recommend a data-driven method

for choosing penalty that allows for non-Gaussian and heteroskedastic disturbances. We adopt a

strategy in the same spirit of Bryzgalova (2015), which assigns weights to λh proportional to the

inverse of the operator norm of the univariate betas of the corresponding factor in ht. This helps

remove spurious factors in ht because of a higher penalty assigned on those factors with smaller

univariate betas.

Our definition of spurious factors differ from the existing literature, in that the weak identifica-

tion issue occurs when covariances between factors and returns are zero or small, rather than when

factors have zero or small multivariate betas. Detecting spurious factors and conducting inference

in the presence of such factors have been discussed by e.g., Kleibergen (2009), Gospodinov et al.

(2014a), and Bryzgalova (2015). In the current framework, we recommend pre-screening to rule out

such factors in gt prior to any empirical analysis.
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2.4 Statistical Inference

We derive the asymptotic distribution of the estimator for λg under a jointly large n and T asymptotic

design. While d is fixed throughout, s and p can either be fixed or increasing. In the appendix, we

prove the following theorem:

Theorem 1. Under Assumptions A.1 - A.6 in Appendix A.2, if s2T 1/2(n−1 +T−1) log(n∨ p∨T ) =

o(1), we have

T 1/2(λ̂g − λg)
L−→ Nd (0,Π) ,

where the asymptotic variance is given by

Π = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E
(
(1− λᵀvt)(1− λᵀvs)Σ−1z ztz

ᵀ
sΣ−1z

)
, Σz = Var(zt).

We stress that this result holds even with imperfect model selection. That is to say, the selected

models from (7) and (8) may omit certain useful factors and include redundant ones, which nonethe-

less has negligible effect on the inference of λg. Using analysis similar to Belloni et al. (2014b), the

results can be strengthened to hold uniformly over a sequence of data generating processes that may

vary with the sample size, so that our inference is valid without relying on a perfect recovery of

the correct model in finite sample. Moreover, the asymptotic distribution of λ̂g does not rely on

covariances or factor loadings of gt and ht, because they appear in strictly higher order terms, which

further facilitates our inference. The next theorem provides a Newey-West type estimator of the

asymptotic variance Π.

Theorem 2. Suppose the same assumptions as in Theorem 1 hold. In addition, Assumption A.7

holds. If qs3/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX = op(1),4 we have

Π̂
p−→ Π,

where λ̂ = (λ̂g : λ̂h) is given by (9), and

Π̂ =
1

T

T∑
t=1

(1− λ̂ᵀvt)2Σ̂−1z ẑtẑ
ᵀ
t Σ̂−1z

+
1

T

q∑
k=1

T∑
t=k+1

(
1− k

q + 1

)(
(1− λ̂ᵀvt)(1− λ̂ᵀvt−k)Σ̂−1z

(
ẑtẑ

ᵀ
t−k + ẑt−kẑ

ᵀ
t

)
Σ̂−1z

)
,

Σ̂z =
1

T

T∑
t=1

ẑtẑ
ᵀ
t , ẑt = gt − η̃Ĩht, η̃

Ĩ
= arg min

η

{
‖G− ηH‖2 : η·,j = 0, j /∈ Ĩ

}
,

4We use a capital letter A to denote the matrix (a1 : a2 : . . . : aT ) and ‖A‖MAX to denote the L∞-norm of A in the

vector space.
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and Ĩ is the union of selected variables using a LASSO regression of each factor in gt on ht:

min
ηj

{
T−1 ‖Gj,· − ηjH‖2 + τ̄jT

−1‖ηj‖1
}
, j = 1, 2, . . . , d. (10)

3 Simulation Evidence

One of the central advantages of our double-selection method is that it obtains proper inference on

the risk premia λg of a factor, taking explicitly into account the possibility that the model selection

step (based on LASSO) may mistakenly include some irrelevant factors or exclude useful factors in

any finite sample.

In this section we therefore study the finite sample performance of our inference procedure using

Monte Carlo simulations. In particular, we show that if one were to make inference on λg by selecting

the control factors via standard LASSO (and ignoring potential mistakes in model selection), the

omitted variable bias resulting from selection mistakes would yield incorrect inference about λg.

Instead, our double-selection procedure fully corrects for this problem in finite sample, and produces

valid inference.

More specifically, in our simulation we are interested in making inference on λg, the vector of

prices of risk of three factors in gt. gt includes a useful factor (denoted as g1t) as well as a useless

factor and a redundant factor (denoted together as a 2 × 1 vector g2t). g2t has zero risk price, i.e.,

λg2 = 0, but the covariance of the redundant factor is correlated with the cross-section of expected

returns. In our simulation, ht is a large set of factors that includes four useful factors h1t, and p− 4

useless and redundant factors collected in h2t (so the total dimension of ht is p).

The motivation for this setup is the case where the true model has 5 true factors (like the

Fama-French 5-factor model), one captured by g1t, and the remaining four captured by h1t. So we

make inference about the price of risk of one of the true factors (g1t), where ht contains the remaining

four, and allow both gt and ht to have useless and redundant factors.

In what follows, we first give details of the simulation procedure, and then show the results of

the Monte-Carlo experiment.

3.1 Simulating the Data-Generating Process

The simulation proceeds as follows. Recall that for any factor or set of factors at, Ca = Cov(rt, at).

Also, recall that our data-generating process (DGP) involves a cross-sectional relationship between

the covariances Cg1 and Ch1 :

Cg1 = ιnξ1 + Ch1χ
ᵀ
1 + Ce1 (11)
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as well as a time-series projection of the true factor g1t onto the remaining true factors h1t:

g1t = η1h1t + z1t (12)

which in turns implies the covariance relation

Cz1 = Cg1 − Ch1η
ᵀ
1 (13)

We use these relations to simulate our environment. We first choose a calibration for the model

parameters (η1, ξ1, χ
ᵀ
1, λg1 , λh1 , etc.), discussed in detail below. Given the chosen parameters, we

generate the covariances of returns and factors C: first drawing Ce1 and Ch1 independently from

multivariate normal distributions, then generating Cg1 using equation (11), and Cz1 using equation

(13). We then generate the time-series of the true factors. To do so, we simulate h1t ∼ N (0,Σh1),

and z1t ∼ N (0,Σz1); g1t is generated using equation (12).

Finally, we simulate returns. To do so, we need to generate the cross-section of expected returns,

E(rt), and the time-series of returns innovations, rt−E(rt). Expected returns are generated according

to the true model: E(rt) = ιnγ0 +Cg1λg1 +Ch1λh1 . Return innovations are generated from the factor

model βg1g1t+βh1h1t+ut, where the betas are βg1 = Cz1Σ−1z1 and βh1 = Ch1Σ−1h1 −βg1η1, as implied by

the DGP. ut is simulated from a Student’s t distribution with 5 degrees of freedom and a covariance

matrix Σu.

The steps described so far simulate the true model, based on the factors h1t and g1t. Next, we

add a simulation of useless and redundant factors. Both are unpriced (they have zero risk price),

but useless factors are also uncorrelated with the true factors (g1t, h1t), while redundant factors are

correlated with the true factors: so they will command a risk premium simply due to this correlation,

even though they have zero risk price as they do not affect marginal utility once the true factors are

controlled for. We include a total of p− 4 factors in ht, half useless and half redundant. We include

one useless and one redundant factor in gt.
5

We calibrate our DGP to mimick the actual Fama-French 5 model. In particular, we calibrate

χ, η, λ, Σz, the mean and covariance matrices of Ce, Ch1 , as well as Σh1 to match the summary

5More technically, we simulate useless and redundant factors such that rt is conditionally independent of g2t and

h2t given g1t and h1t; g1t is conditionally independent of h2t given h1t; Cg1 is conditionally independently of Ch2 given

Ch1; and E(rt) is conditionally independent of Cg2 and Ch2 . For both useless and redundant factors, we calculate

(Cg2 : Ch2) = ιnθ0 + (Cg1 : Ch1)θ1 + Cε, where θ0 is a 1 × (p − 2) matrix, θ1 is a 5 × (p − 2) matrix, and Cε is

simulated independently from a multivariate normal distribution. We set (p/2− 1) columns of θ1 to 0s, so that half of

the factors in g2t and h2t are useless, because in the cross-section, their covariances are not correlated with E(rt). The

remaining half are redundant factors. The factors g2t and h2t are simulated as: (gᵀ2t : hᵀ
2t)

ᵀ = φᵀ(rt−E(rt))+νt, where

φ = Σ−1
r (Cg2 : Ch2) is a n× (p− 2) matrix, Σr = Cz1Σ−1

z1 C
ᵀ
z1 + Ch1Σ−1

h1
Ch1 + Σu, and νt is simulated independently

from a multivariate normal distribution.
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statistics (times series and cross-sectional R2, factor-return covariances, etc) of the Fama-French 5

factors estimated using 202 characteristics sorted portfolios, described in detail in the next section.

We calibrate a diagonal Σu so that the average time series R2 for this 5-factor model is 85%. For

redundant and useless factors, we calibrate the parameters using all the other factors in our data

library, again described in detail in the next section.

Our calibrated data-genereting process by construction achieves the desired sparsity of χ, λᵀh,

and η, because their last (p−4) columns are 0s. At the same time, it produces non-zero unconditional

correlations among all factors in the time series and among their covariances in the cross section.

The total number of Monte Carlo trials is 2000. Since we assume non-random selection of assets, we

simulate only once Cg, Ch, and hence βg, βh, so that they are constant throughout the rest of the

Monte Carlo trials.

3.2 Simulation Results

We report here the results of various simulations from the model. We consider various settings

with number of total factors p = 25, 100, number of assets n = 50, 100, 200, and length of time

series T = 360, 480, 600. Also, we report simulation results using different choices of regularization

parameters for robustness, including BIC, AIC, and 10-fold cross-validation.

Figure 1 compares the asymptotic distributions of the proposed double selection estimator with

that of the single selection estimator for the case p = 100, n = 200, and T = 600. The right side

of the figure shows the distribution of the t-test for the price of risk λg of the three factors (useful

in the first row, redundant in the second row, and useless in the third row) when using the controls

selected by standard LASSO (i.e. a single-selection-based estimator). The panels show that inference

without double-selection adjustment displays substantial biases and distortion from normality. The

left side of the figure shows instead that our double-selection procedure produces an unbiased and

asymptotically normal test, as predicted in Theorem 1.

Figure 2 plots the histograms of the select variables for each selection step. It is useful to notice

that the LASSO procedure does include many useless factors as controls: if the model selection was

able to perfectly identify the correct controls in ht, exactly the 4 factors h1,t would be selected –

yet, the LASSO often selects more than 20 factors. The key to correct inference is that the two-step

selection procedure minimizes the potential omitted factor bias.

Tables 1, 2, and 3 compare the biases and root-mean-squared errors (RMSEs) for double-

selection, single-selection, and the OLS estimators of each entry of λg, respectively. We only report

results based on BIC and 10-fold cross-validation for selecting regularization parameters. The results

based on AIC is similar to that of the cross-validation.
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Both double- and single-selection estimators outperform OLS in terms of the RMSEs, particu-

larly when p is large relative to n. When p is greater than n, OLS becomes infeasible. This result

confirms the efficiency benefits of dimension-reduction techniques. In addition, the double-selection

estimator has a smaller bias and a smaller RMSE than the single-selection estimator. But the main

advantage of double-selection relative to single-selection is in removing the distortions to inference,

visible from the distribution of standardized statistics in Figure 1.

Note that the biases and RMSEs become smaller as n and T increase. Instead, when p is larger,

the results exacerbate slightly. Overall, the simulation results confirm our econometric analysis that

the double-selection estimator outperforms the benchmarks.

4 Empirical Analysis

In this section we apply our methodology to the data library of hundreds of factors. We first show

how our estimation procedure can be used to evaluate whether a newly proposed factor actually

provides useful pricing information compared to the myriad of existing factors. We document that

indeed some of the recently proposed factors (for example, profitability) do contribute significantly to

explaining asset prices, even controlling for the hundreds of factors that the literature had proposed

previously. We also evaluate our methodology recursively and out of sample, verifying that factors

that appear significant when they were introduced indeed tend to be selected in the best parsimonious

asset pricing model in later years.

In addition, we show that our model-selection procedure selects a parsimonious model even

as the number of proposed factors increases over time; yet, the fit of the selected model keeps

improving as new potential factors are added. This suggests that the asset pricing literature has

indeed uncovered better factors over time, and that our procedure allows us to bring discipline to

this ever-growing list of factors, identifying the most useful ones.

4.1 The Zoo of Factors

Our factor library contains 114 factors (both tradable and non-tradable) at the monthly frequency

from July 1980 to December 2015 from multiple sources. For factors introduced in 2016, we use their

data up to 2015. First, we downloaded all workhorse factors in the U.S. market from Ken French’s

data library. Then, we added several published factors directly from authors’ website, such as

liquidity of Pástor and Stambaugh (2003), the q-factor model of Hou et al. (2014),6 the intermediary

asset pricing model of He et al. (2016), the Betting-Against-Beta, and Quality-Minus-Junk factors

from AQR. Finally, in addition to those publicly available factors, for the firm characteristics reported

6We are grateful to Lu Zhang for sharing the factors data.
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in Green et al. (2016),7 we follow the Fama-French portfolio sorting rule and construct the long-short

portfolio spreads (top 30% - bottom 30% or 1-0 dummy difference) based on the security sorting on

the previous June.

In Tables 1, 2, and 3 of the Supplemental Appendix, we report descriptive statistics for the set

of 114 factors (monthly average returns, standard deviations, annualized Sharpe ratios) as well as

the academic sources. We only use 105 of them in the empirical analysis because of missing values.

We follow Hou et al. (2014) and provide six main categories for the factor classification: Momentum,

Value-versus-Growth, Investment, Profitability, Intangibles, and Trading Frictions. There are more

than 10 factors in each category.

As a brief summary of the factors created by long-short portfolio spreads, 95 factors have

annualized Sharpe ratios greater than 0.1, and 27 of them greater than 0.5. For the time-series test

of the risk premium (expected excess return) of tradable factors, 51 factors have t-stat greater than

2, and 26 of them have t-stat greater than 3. We also test the time series alphas of these tradable

factors relative to the Fama-French 3-factor model. 74 of them have t-stat greater than 2, and 37 of

them have t-stat greater than 3.

4.2 Test Portfolios

We conduct our empirical analysis on a large set of standard portfolios of U.S. equities. We target

U.S. equities because of their better data quality and because they are available for a long time

period—however, our methodology could be applied to any set of countries or asset classes. We

include in our analysis 202 portfolios: 25 portfolios sorted by size and book-to-market ratio, 17

industry portfolios, 25 portfolios sorted by operating profitability and investment, 25 portfolios sorted

by size and variance, 35 portfolios sorted by size and net issuance, 25 portfolios sorted by size and

accruals, 25 portfolios sorted by size and momentum, and 25 portfolios sorted by size and beta.

This set of portfolios captures a vast cross section of anomalies and exposures to different factors;

at the same time, they are easily available on Kenneth French’s website, and therefore represent a

natural starting point to illustrate our methodology.8 We conduct our analysis on the period from

July of 1980 to December of 2015 (426 months), for which all of the returns and factors are available.

We perform the analysis at the monthly frequency, and work with factors that are available at the

monthly frequency.

7We are grateful to Jeremiah Green for sharing the firm characteristics data.
8See the description of all portfolio construction on Kenneth French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
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4.3 Are New Factors Useful?

One of the motivations for our methodology is to bring discipline to the large number of factors the

literature has proposed, teasing out which ones truly contain new useful asset pricing information

(that helps explain the cross-section of prices), and which instead are redundant or useless in pricing

the panel of returns.

In this section, we apply our methodology to factors that have been proposed in the last five

years, drawing the “control” factors from the set of more than 100 factors that have been proposed

before 2011. That is, we ask whether the recently introduced factors add any new pricing information

to the existing factors, or are redundant or outright useless in pricing the panel of returns. There is

no ex-ante reason to expect the results to go in either direction. On the one hand, given that the

set of potential control factors is already extremely large, one might think that it is unlikely that

new factors contribute much to pricing the cross-section of returns. On the other hand, we expect

new research to potentially uncover better factors over time, yielding factors that improve over the

existing ones.

Table 4 reports the results for many factors proposed in the last 5 years, among which we find:

quality-minus-junk (QMJ), betting-against-beta (BAB), two investment factors (CMA from Fama-

French and IA from HXZ), two profitability factors (RMW from Fama-French and ROE from HXZ),

and the intermediary capital factor from He et al. (2016).

The table contains three panels. The left panel reports the results of single- and double-selection

methods. The middle panel shows the results when the controls are not selected optimally, but are

simply the three Fama-French factors; if the true model has additional factors, this approach would

suffer from omitted variable bias. The last panel contains information about the risk premium

associated with each factor (when the factor is traded): simply the time-series average excess return

of each factor.

The first column of the table shows the slope of the cross-sectional regression of returns on

(univariate) betas for each factor, controlling for the factors selected by our two-stage procedure.

The number in this column represents the average excess return in basis points per month of a

portfolio with unit univariate beta with respect to that factor. This number is equal to λg but scaled

to excess return units for ease of interpretation. A positive number in the first column indicates that

high value of the factor capture states of low marginal utility (good states of the world). The second

column (labeled “t-stat DS”) reports the t-statistic for the test that this coefficient is different from

zero using our double-selection methodology.

While many recent factors do not appear to contain useful new information, there are significant

exceptions. In particular, the profitability factors (ROE and, to a lesser extent, RMW) seem to
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provide new useful information for pricing the cross-section of returns.

The last column of the double-selection panel reports the cross-sectional R2 achieved by the

selected model. While the R2 varies from model to model, it ranges between 71% and 77%, a high

value for such a large large cross-section of returns.

The middle panel of the table shows the results where the “control” factors in the cross-sectional

regression are assumed to be the three Fama-French factors. Two things are noteworthy. First, the

R2 of the 3-factor model (plus the additional factor considered) is low in the panel of 202 portfolios,

mostly lower than 30%. Clearly, more factors are needed to explain the large cross-section of returns

we study. This suggests that estimates of the risk price of a factor will be affected by omitted variable

bias. In fact, comparing the middle and left panels of the table one immediately sees that many of

the results change significantly when using our model-selection procedure instead of using the three

Fama-French factors as controls. For example, the betting-against-beta factor has a positive and

significant price of risk when controlling for the FF3 factors, but it is insignificant when controlling

for all other factors. Profitability instead appears statistically more significant when controlling for

existing factors.

The rightmost panel of the table shows the average excess return of the factor, when tradable,

i.e., its risk premium. This number represents the compensation that investors obtain from bearing

exposure to that factor holding all other risk factors constant. As discussed for example in Cochrane

(2009), the risk premium of a factor does not correspond to its ability to price other assets, i.e.

its coefficient in the SDF. Using the risk premium to assess the importance of a factor in a pricing

model can therefore be misleading. For example, consider two factors that are both equally exposed

to the same underlying risk, plus some noise. Both factors will command an identical risk premium.

Yet, those factors are not both useful to price other assets—no matter what their level of statistical

significance is. The most promising way to reduce the proliferation of factors is not to look at

their risk premium (no matter how significant it is), but to evaluate whether they add any pricing

information to the existing factors. Our paper proposes a way to make this feasible even in a context

of high dimensionality, when the set of potential control factors is large.

Finally, the table also illustrates the importance of both steps in the double-selection method-

ology. The column “tstat-SS” in the left panel shows the inference that would be made if one were

to select the controls via standard LASSO and then performing statistical inference on gt, i.e. ignor-

ing the second stage in the double-selection procedure. Comparing the single-selection (“tstat-SS”)

and the double-selection (“tstat-DS”) columns, it is evident that inference about the price of risk of

many factors would change. For example, QMJ and the maximal negative return (maxret) would

appear useful under single-selection, but double-selection reveals their risk price to be smaller and

insignificant. This, combined with our simulation evidence in the previous section, emphasizes the
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importance of selecting the controls appropriately. In the context of this paper, that means using

double selection to minimize the ex-ante omitted variable bias.

Given that the core of this paper is a procedure to select controls from ht in two steps, it is

interesting to look at what controls are chosen in this case among those introduced before 2011.

We start by looking at the first stage of the double-selection, that, in this case, selects 14 factors.

Table 5 reports them together with their risk price and a test of significance (itself based on double

selection); it also reports their risk premia.

Two things are noteworthy about the first selection stage. First, several – but not all – of the

selected factors are statistically significant. This is typically the case with LASSO-based procedures,

that eliminate some factors entirely (setting their coefficients to 0), but that also tend to include

some non-significant factors. Second, the factors selected are not the standard factors the literature

often used as controls (in particular, the Fama-French factors). This indicates that in the 20 years

since they were introduced, newer factors have improved pricing relative to those early factors.

To the 14 factors selected in the first stage and reported in Table 5, our double-selection pro-

cedure adds additional control factors in a second stage; these are factors whose risk exposures are

cross-sectionally correlated with those of the target factor gt, which are crucial to minimize the omit-

ted variable bias in risk prices. For reasons of space, we do not report the additional factors for all

the gt of Table 4: each factor gt induces a different second-stage selection. The typical second stage

adds around 3-5 factors; for example the profitability factor from HXZ includes 4 additional factors

that were not already in the first stage selection.

The results so far described the application of our double-selection methodology to the factors

introduced in the period 2011-2016, highlighting how some new factor appear significant even relative

to the large set of existing factors. Next, we extend this exercise in a fully recursive way, where each

year we test new factors relative to the ones existing up to then, and then verify recursively whether

factors that are deemed significant indeed are selected as part of the best model in future years.

4.4 A Recursive and Out-of-Sample Evaluation

One of the advantages of our procedure is that even as new potential factors are added to the pool

of controls, the procedure always selects a low-dimensional model for the stochastic discount factor

when evaluating new factors. Over time, as new factors are proposed, our procedure will retain the

ones with best explanatory power for the cross-section of returns and evaluate new factors against

the best of the existing factors.

To illustrate this point, we perform the following recursive testing exercise. In each year starting

in 1994, we consider the factors introduced during that year, and use our double-selection procedure
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to test whether they are useful or redundant relative to factors existing up to then. We can then

follow over time which factors appear useful when they are introduced, and which ones do not.

Note that in this exercise we update the pool of factors recursively but use the entire time-series to

construct our tests: this way, the only thing changing over time is the set of factors available in the

pool of potential controls ht. This allows us to focus how the set of selected and significant factors

evolved as new factors were added in the literature, without being contaminated by the fact that

over time the time series of returns also changed.9

Table 6 reports the factors introduced in each year starting in 1994, identified by their id, and

underlines the ones that appear to be statistically significant according to our test. Of the 80 factors

introduced between 1994 and 2016, our procedure found only 11 of them to be useful at the time

they were introduced. This is a sign that – according to our estimates – many of the factors in the

“zoo of factors” are redundant or useless.

To evaluate the usefulness of our methodology, we next construct a recursive evaluation exercise

in the following way. Every time that a new factor is introduced, we test whether its risk price is

nonzero, controlling for all factors existing up to that point, as described above. We then look

whether in future years – when this factor will now belong to the set of potential controls ht –

this factor will be selected as part of the best model. This analysis tells us whether factors that

are determined significant by our double-selection test tend to actually replace older factors and be

selected in future selections, and whether vice-versa factors that are deemed insignificant then are

not included in the best model in future years.

We start by looking in Table 7 at the evolution of the model selected using recursively the factors

available up to each year. For ease of reading, we report only the significant factors. The table shows

that the “best” control model selected out of the (recursively expanding) ht is remarkably stable

over time. Some factors (such as No.63, corporate investment) tend to appear throughout the 20

years considered, being selected almost all the time. Others appear at the beginning but are they

substituted by more modern factors (e.g., No.41, introduced in 1998, disappears from the optimal

model after 2001).

Among the factors that are selected as part of the model by the model-selection procedure

– reported in Table 7 – how many of them were actually deemed to be useful by our test when

introduced? The table underlines factors that were deemed to be significant at introduction and

greys out the ones that were never tested because they were introduced before 1994. The table shows

that in fact all but a couple of the factors that we see being selected as part of the parsimonious

asset pricing models were originally deemed to be useful, thus confirming that our inference (applied

at the introduction of the factor) is able to identify factors that contain strong pricing information.

9We discuss a full out-of-sample extension of this exercise below.
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To summarize the results of the recursive evaluation, Table 8 shows how many factors are later

on selected in the parsimonious model depending on whether our test established that they were

significant for explaining asset pricing when they were introduced. The table shows that 80% of the

factors deemed significant are then selected in the model later on; 70% of those not determined to

be significant in fact do not appear important ex-post and do not get selected (here we consider a

factor to be selected if it is selected at least 3 times in future years).

Results are similar when updating not only the pool of factors but also the time-series of the

data recursively, in a fully out-of-sample recursive evaluation. As expected, results are weaker in this

case due to the shorter time series now available for estimation and model selection. Still, 70% of

significant factors are selected in later years at least 3 times, and 55% of the insignificant ones are

not selected later on 3 times or more.

Overall, the recursive analysis confirms that in fact our procedure is able to uncover factors

that represent useful additions to the asset pricing model, and discard factors that are redundant or

useless.

4.5 Risk Prices, Risk Premia, and Student t-Stats of 3

Recent research (McLean and Pontiff (2016), Harvey et al. (2015)) has pointed out the vast number

of anomalies and factors the literature has found. In particular, these papers note that the large

number of anomalies and risk factors that appear significant at standard significance levels has

increased dramatically, leading to concerns of data mining. In response to this, Harvey et al. (2015)

propose to adopt a stricter requirement for significance – such as using a threshold for the t-stat of

3, motivated from the multiple testing literature.

While motivated by this literature, in this paper we propose a different solution to the expanding

myriad of factors and anomalies: to evaluate each new potential factor’s contribution to explaining

asset prices relative to the existing factors, and to use model selection techniques to select the best

model out of potentially hundreds of factors.

Our approach differs from the approaches proposed in the existing literature in three substantial

ways. First, it directly takes into account the correlation among factors, rather than considering

factors individually and using Bonferroni-type bounds to assess their joint significance. We provide

a statistical test of a factor’s contribution with desirable asymptotic properties, as demonstrated in

the previous sections.

Second, it directly handles hundreds of factors, exploiting machine-learning advances to reduce

the dimensionality of the factor set. As discussed more below, this yields a parsimonious model

whose size is stable even when the set of potential factors has been growing rapidly.
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Third, the criterion we employ for selecting factors is based on the risk price, not the risk pre-

mium, of the factors; it therefore captures the contribution of a factor to explaining asset prices. As

discussed in Cochrane (2009) as well as, more recently, in Fama and French (2016) and in Barillas

and Shanken (2015), to test whether a factor contributes to explaining the cross-section of expected

return, one should do inference on its risk price: the loading of the SDF on that factor, or, equiv-

alently, the slope of a cross-sectional regression onto that factor and the other factors in the SDF

using univariate betas. The risk premium (or equivalently the slope of a cross-sectional regression

that uses multivariate betas) does not capture the pricing ability of a factor for the cross-section of

assets, and therefore is not the right criterion to select factors in a model.

Consider for example a factor A with a strongly significant excess return (say with a t-stat above

3). Construct now a new factor B, equal to A plus a small amount of orthogonal noise. Both A and

B will yield the same expected return (risk premium), and if the noise has low enough variance, both

will appear (3-standard-deviations) statistically significant. Yet, they contain the same information.

Our procedure—based on risk prices— would correctly reveal it to be redundant relative to A.

To illustrate this point, consider Figure 3. The solid line in the figure plots the total (cumulative)

number of factors we collected, as they were added in the literature over time. Of these, about half

have a risk premium (in our data) significant with a t-stat above 2, and about a sixth have a t-stat

above 3 (blue and black dashed lines). The figure shows that irrespective of the statistical criterion

used for significance, the number of significant factors has increased linearly over time together with

the number of total factors produced. Consider in particular the number of factors with t-stat above

3. This number went from 3 in 1994 to 26 in 2016 — a eight-fold increase in 20 years.

This should not be surprising: any new portfolios that are simply correlated with existing factors

or anomalies necessarily command a risk premium, including factors that are entirely redundant.

There is no reason to expect the set of statistically significant anomalies to stop expanding as we

add more factors over time, regardless of the hurdle chosen for significance, and indeed, it does not

in our data.

Contrast now this with the model selected by our procedure. Figure 3 also reports the dimension

of our recursively-selected model (the same one used for Table 7). In particular, the red dotted line

plots the total number of factors selected (both significant and non significant), whereas the dashed

blue line reports just the number of significant factors among those selected. Both lines are extremely

stable during this period, resulting in a parsimonious model that only retains the most relevant factors

for asset pricing.

Interestingly, while the number of factors of our selected model has not increased dramatically

over time, the cross-sectional R2 achieved by the model has increased from around 50% in 1994 to
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around 75% in 2016, indicating that indeed the asset pricing literature has proposed better factors

over time.

5 Conclusion

In this paper we propose a regularized two-pass cross-sectional regression approach to establish the

contribution to asset pricing of each factor relative to a set of control factors ht, where the potential

control set can have high dimensionality and include useless or redundant factors. Our procedure uses

machine-learning techniques (specifically the double-selection procedure of Belloni et al. (2014b)) to

systematically select the best control model out of the large set of factors, while explicitly taking

into account that in any finite sample we cannot be sure to have selected the correct model.

We apply this methodology to a large set of factors that the literature has proposed in the last

30 years. We uncover several interesting empirical findings. First, several newly proposed factors

(for example, profitability) are useful in explaining asset prices, even after accounting for the large

set of existing factors proposed up to 2011. Second, factors that are deemed significant by our

test when they are introduced in the literature tend to be selected as part of the best “control”

model in later years, confirming that our procedure does select useful pricing factors. Third, the

best parsimonious model selected recursively (adding over time new factors as they are proposed)

achieves an increasingly higher cross-sectional R2 over time, even as its dimension stays stable. This

confirms that asset pricing research has indeed been producing better factors over time. Fourth, we

demonstrate how our results differ starkly from the conclusions one would obtain simply by using

the risk premia of the factors or the standard Fama-French 3-factor model as control (as opposed to

the model selection procedure we advocate).

Taken together, our results are quite encouraging about the continuing progress of asset pricing

research, and suggest that studying the marginal contribution of new factors relative to the vast set

of existing ones is a conservative and productive way to screen new factors as they are proposed, as

well as to organize the current “zoo of factors”.
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Table 1: Asymptotic Approximation Performance for λuseful

Bias RMSE

p = 25 p = 100 p = 25 p = 100

n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: BIC

T = 360

50 -0.37 -4.47 1.18 -8.68 -12.26 NaN 5.97 7.28 7.17 17.46 14.17 NaN

100 0.08 -2.74 1.08 -1.27 -5.34 NaN 5.21 6.38 5.76 6.55 7.54 NaN

200 0.33 -0.57 1.08 -0.22 -3.45 3.93 4.74 5.05 4.99 5.48 6.06 10.97

T = 480

50 -1.48 -2.49 0.76 -7.32 -11.70 NaN 5.46 5.68 6.43 10.56 12.72 NaN

100 0.03 -1.74 0.88 -1.47 -5.70 NaN 4.40 4.77 4.76 5.66 7.35 NaN

200 0.26 -0.39 0.90 -0.18 -2.27 3.47 4.18 4.23 4.36 4.74 5.23 8.24

T = 600

50 -1.26 -3.15 0.40 -7.93 -12.22 NaN 4.80 5.27 5.40 12.02 13.44 NaN

100 0.02 -1.51 0.74 -0.98 -4.03 NaN 3.91 4.23 4.11 5.04 6.02 NaN

200 0.21 -0.21 0.63 -0.51 -2.55 2.49 3.52 3.56 3.62 4.36 4.79 7.13

Panel B: Cross-Validation

T = 360

50 -0.56 -3.12 1.22 -5.41 -10.21 NaN 5.73 7.02 6.69 12.06 12.17 NaN

100 0.13 -1.74 1.15 -1.53 -5.46 NaN 4.62 5.64 5.09 6.53 7.62 NaN

200 0.22 -0.56 0.91 -0.02 -3.73 4.20 4.69 4.97 4.88 5.69 6.04 10.85

T = 480

50 -3.32 -5.61 0.48 -5.40 -10.52 NaN 6.63 7.47 8.04 8.84 11.66 NaN

100 -0.12 -1.12 0.69 -1.57 -5.82 NaN 4.25 5.16 4.48 5.81 7.43 NaN

200 0.33 -0.69 0.89 0.03 -2.45 3.17 4.20 4.21 4.40 5.05 5.32 8.24

T = 600

50 -1.60 -4.88 0.76 -5.39 -10.20 NaN 4.86 6.73 6.52 8.69 11.45 NaN

100 0.22 -2.36 0.87 -1.25 -4.18 NaN 3.85 4.73 4.14 5.31 6.18 NaN

200 0.11 -0.62 0.60 -0.91 -3.10 2.39 3.56 3.81 3.72 4.42 5.04 7.06

Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the price of risk λ of the

useful factor from Monte Carlo simulations. DS is the double-selection estimator, SS is the single-selection estimator,

and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are selected

either by minimizing BIC or using 10-fold Cross-Validation. The true value λuseful is 16.76.
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Table 2: Asymptotic Approximation Performance for λredundant

Bias RMSE

p = 25 p = 100 p = 25 p = 100

n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: BIC

T = 360

50 -0.07 -0.96 -0.12 -0.51 -0.50 NaN 1.51 1.54 1.88 2.66 1.16 NaN

100 -0.18 -0.20 -0.19 -0.13 -0.63 NaN 1.01 1.01 1.19 1.32 1.12 NaN

200 -0.09 -0.22 -0.10 -0.09 -0.72 -0.12 0.71 0.84 0.77 0.72 1.02 1.45

T = 480

50 -0.26 -0.57 -0.19 -0.11 -0.09 NaN 1.51 1.42 1.83 1.93 1.17 NaN

100 -0.15 -0.90 -0.20 -0.26 -0.64 NaN 1.08 1.52 1.26 1.20 1.02 NaN

200 -0.10 -0.35 -0.10 -0.15 -0.37 -0.17 0.67 0.83 0.73 0.79 0.88 1.29

T = 600

50 -0.06 -0.97 -0.11 -0.40 -0.33 NaN 1.22 1.37 1.57 1.96 1.22 NaN

100 -0.17 -0.42 -0.15 -0.11 -0.82 NaN 0.93 1.05 1.02 1.06 1.23 NaN

200 -0.04 -0.11 -0.05 -0.09 -0.74 -0.19 0.61 0.72 0.66 0.67 1.07 1.28

Panel B: Cross-Validation

T = 360

50 -0.30 -0.18 -0.42 -0.53 -0.68 NaN 1.67 1.62 2.23 2.22 1.07 NaN

100 -0.25 -0.29 -0.31 -0.11 -0.60 NaN 1.24 1.24 1.46 1.35 1.13 NaN

200 -0.08 -0.15 -0.07 -0.07 -0.58 -0.11 0.75 0.78 0.83 0.79 0.94 1.48

T = 480

50 0.14 -0.59 -0.12 -0.16 -0.12 NaN 1.40 1.33 1.89 1.82 1.19 NaN

100 -0.13 -0.16 -0.12 -0.20 -0.61 NaN 0.93 0.94 1.03 1.26 1.00 NaN

200 -0.06 -0.32 -0.06 -0.13 -0.33 -0.16 0.61 0.82 0.65 0.81 0.83 1.28

T = 600

50 -0.32 -0.93 -0.38 -0.52 -0.49 NaN 1.62 1.94 2.24 1.73 1.39 NaN

100 -0.12 -0.41 -0.13 -0.15 -0.69 NaN 0.89 1.05 1.04 1.05 1.13 NaN

200 -0.05 -0.24 -0.06 -0.06 -0.54 -0.13 0.64 0.79 0.71 0.67 0.92 1.25

Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the price of risk λ of

the redundant factor from Monte Carlo simulations. DS is the double-selection estimator, SS is the single-selection

estimator, and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are

selected either by minimizing BIC or using 10-fold Cross-Validation. The true value λredundant is 0.
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Table 3: Asymptotic Approximation Performance for λuseless

Bias RMSE

p = 25 p = 100 p = 25 p = 100

n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: BIC

T = 360

50 0.01 -0.07 -0.02 0.14 0.12 NaN 0.41 0.39 0.59 0.94 0.49 NaN

100 0.02 -0.07 0.01 0.02 0.00 NaN 0.31 0.33 0.36 0.34 0.31 NaN

200 0.00 0.01 0.00 0.01 0.02 0.00 0.18 0.18 0.20 0.19 0.18 0.35

T = 480

50 0.00 0.01 0.00 -0.18 -0.19 NaN 0.53 0.51 0.72 0.55 0.45 NaN

100 0.00 0.05 0.00 0.02 0.03 NaN 0.27 0.28 0.30 0.28 0.26 NaN

200 0.01 0.03 0.01 0.00 -0.01 0.00 0.17 0.18 0.18 0.18 0.17 0.35

T = 600

50 -0.01 -0.05 0.00 0.10 0.01 NaN 0.33 0.33 0.42 0.52 0.40 NaN

100 0.00 -0.03 0.01 0.01 0.04 NaN 0.28 0.28 0.31 0.24 0.24 NaN

200 0.01 0.01 0.01 0.00 0.00 -0.02 0.15 0.15 0.15 0.16 0.16 0.30

Panel B: Cross-Validation

T = 360

50 -0.04 -0.10 -0.05 0.10 0.12 NaN 0.49 0.48 0.65 0.69 0.50 NaN

100 0.01 0.04 0.00 0.02 0.01 NaN 0.29 0.30 0.33 0.35 0.31 NaN

200 0.01 0.02 0.01 0.00 0.02 -0.01 0.19 0.19 0.21 0.21 0.18 0.34

T = 480

50 -0.01 -0.01 0.00 -0.18 -0.22 NaN 0.44 0.43 0.63 0.50 0.47 NaN

100 0.00 -0.01 0.00 0.02 0.03 NaN 0.27 0.27 0.31 0.32 0.25 NaN

200 -0.01 -0.01 -0.01 0.00 -0.02 0.01 0.17 0.17 0.18 0.22 0.17 0.34

T = 600

50 -0.02 0.02 0.02 0.14 0.04 NaN 0.36 0.37 0.47 0.49 0.40 NaN

100 0.01 0.10 0.00 0.02 0.03 NaN 0.22 0.27 0.25 0.28 0.24 NaN

200 0.01 0.00 0.01 0.00 0.00 0.00 0.16 0.17 0.17 0.17 0.15 0.30

Note. This table provides the biases and root-mean-squared errors (RMSE) of the estimates of the price of risk λ

of the useless factor from Monte Carlo simulations. DS is the double-selection estimator, SS is the single-selection

estimator, and OLS is the ordinary least squares without selection. The regularization parameters in the LASSO are

selected either by minimizing BIC or using 10-fold Cross-Validation. The true value λuseless is 0.
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Table 4: Testing for factors introduced in 2011-2016

Regularized two-pass Fama-MacBeth Average excess ret

id Factor λs tstat tstat R2 tstat R2 avg.ret. tstat

(bp) (DS) (SS) (FF3) (FF3) (bp)

98 Maximum daily return -61 -0.16 1.90* 71.7% -1.53 25.0% 15 0.61

99 Cash holdings 88 0.53 -0.50 71.7% -0.10 22.2% 30* 1.65

100 Quality Minus Junk 54 1.14 1.88* 77.6% 0.32 22.3% 49*** 3.99

101 Gross profitability 40 0.65 -0.33 76.7% 2.58*** 28.6% 29*** 2.63

102 Organizational capital 22 0.33 -0.43 71.7% 2.05** 29.1% 51*** 3.52

103 AEM Leverage -29 -0.53 0.57 70.0% 3.42*** 44.7%

104 HXZ Investment -34 -1.63 0.45 71.7% 1.27 25.6% 38*** 4.04

105 HXZ Profitability 66 2.09** 1.26 71.9% 1.88* 29.5% 59*** 4.63

106 Betting Against Beta -40 -0.77 -0.28 71.7% 2.76*** 41.1% 96*** 5.45

107 Employee growth 27 0.76 1.40 71.7% 2.12** 31.5% 24*** 2.73

108 RMW 49 1.54 2.20** 74.2% 0.91 23.0% 38*** 3.34

109 CMA -25 -0.95 0.65 71.7% 1.58 27.3% 30*** 3.07

110 Intermediary Capital -33 -0.50 0.83 71.7% -0.26 22.3%

111 Intermediary Investment -62 -0.63 0.83 71.7% -0.35 22.4% 114*** 3.48

112 Convertible Debt 29 1.65* 2.11** 74.8% 2.56*** 34.7% 27*** 3.77

Note. The table reports tests for the contribution of factors introduced in 2011-2016 relative to the set of factors

introduced up to 2010. The left panel shows the estimate of risk price λg for each factor, together with the t-statistic

obtained using our double-selection procedure and standard errors (t-stat DS), the t-statistic obtained using a single-

selection procedure (t-stat SS), and the cross-sectional R2 achieved by the model. λs is expressed in basis points per

month. The middle panel shows the corresponding risk price estimates where the three Fama-French factors (RmRf,

SMB, HML) are used as controls instead of the optimally-selected factors. We report the t-stat for the risk price as

well as the cross-sectional R2 achieved by the model that includes gt and the three Fama-French factors. The right

panel shows average excess returns (risk premia) for tradable factors, with corresponding test of significance.
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Table 5: Testing for factors selected in 2010

Regularized two-pass Average excess ret

id Factor λs (bp) tstat (DS) avg.ret. (bp) tstat

35 Sales to price 12 0.87 3 0.47

37 Adjusted capital expenditures -16 -0.63 8* 1.70

38 Gross margin to sales 5 0.69 11*** 2.40

42 Share turnover 20 2.17** 11*** 2.65

49 Financial statements score 70 0.84 34*** 2.51

51 # Analyst -10 -0.59 20*** 3.20

54 Turnover volatility -83 -2.22** 32 1.13

58 Illiquidity 33 2.71*** 14*** 2.57

64 R&D increase 30 1.41 38*** 6.35

66 Tax income to book income 55 2.20** 5 0.66

67 # years Compustat coverage 6 0.17 31*** 3.08

76 R&D to sales 7 0.48 1 0.14

79 Change in # analyst -31 -0.73 41*** 3.82

87 Earnings announcement return -32 -0.79 37*** 4.30

Note. The table reports the list of factors selected as controls for the tests of Table 4 (first step of the double-selection

procedure). In addition to reporting the list of factors, we also report their significance (itself obtained using our

double-selection asymptotic results). The right part of the table shows average excess returns (risk premia) for the

control factors, with corresponding test of significance.
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Table 6: Testing Factors by Published Year

Year Factor id

1994 30

1995 31 32 33

1996 34 35

1997 36

1998 37 38 39 40 41 42

1999 43 44

2000 45 46 47 48 49

2001 50 53 54

2002 55 56 58

2003 59 60 61

2004 62 63 64 65 66

2005 67 68 69 70 71

2006 72 73 74 75 76 77 78

2007 80 81

2008 82 83 84 85 86 87

2009 88 89 90 91

2010 92 93 94 96 97

2011 98

2012 99

2013 100 101 102

2014 104 105 106 107

2015 108 109

2016 110 111 112

Note. The table reports factor testing results recursively from 1994 to 2016. For each year t, we report the id of the

factors that were introduced during that year. We underline a factor if its risk price is statistically significant according

to our double-selection test, controlling for all factors introduced up to year t− 1.
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Table 7: Recursive Test for Selected Models

Year Factor id

1994 8 12 15 16 27

1995 1 15 16 27 33

1996 1 16 33

1997 1 33

1998 1 16 33 39 40

1999 16 39 40 41 44

2000 16 33 39 40 41

2001 30 33 39 40 41

2002 39 40 44 55

2003 39 40 44 55 63

2004 39 40 44 55 63

2005 26 39 44 55 63

2006 26 44 53 63

2007 26 44 63 71

2008 26 44 63 71

2009 26 44 59 63 71

2010 44 59 63 71

2011 39 59 63 71

2012 39 59 63 71

2013 26 39 63 71

2014 26 44 63 71 100

2015 26 44 63 100

2016 26 44 63 71

Note. The table reports in each year t the factors that are selected by our procedure among all the ones available up

to that year. The selection is operated via LASSO and corresponds to the first, model-selection step of our two-step

procedure. Underlined factors are those that had been deemed significant using our statistical test at the time of their

introduction. Non-underlined factors are those that are selected in the model in year t yet were insignificant when first

introduced. Shaded factors are those that were never tested when introduced (since they were introduced in 1994 and

we start testing factors in 1994, as shown in Table 6.)

Table 8: Recursive Test Summary

Later Selected Later Not Selected

Significant at introduction 81.8% 18.2%

Insignificant at introduction 30.3% 69.7%

Note. The table reports the recursive performance of our statistical test. For each factor introduced since 1994, the

table notes whether it was statistically significant when it was introduced (established using our test), and counts

whether that same factor was later on selected to be part of the best parsimonious model in future years, for at least 3

years. The table then summarizes how often significant or insignificant factors get included in the model subsequently.
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Figure 1: Histograms of the Standardized Estimates in Simulations
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Note. This figure presents the histograms of the standardized double- and single-selection estimates using estimated

standard errors, compared with the standard normal density in solid dash lines. We set T = 600, N = 200, and

p = 100. The regularization parameters in each selection are chosen by minimizing their BICs.
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Figure 2: Histograms of the Selection Variables
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Note. The figure reports how often each factor is selected in each step of our double selection (and their union in the

bottom panel) in Monte Carlo simulations. Each factor corresponds to a number on the X axis. Factors 1 - 4 are part

of the true factors in the DGP. Factors 5 - 52 are redundant, whereas factors 53 - 100 are useless. We set T = 600,

N = 200, and p = 100. The regularization parameters in each selection are chosen by minimizing their BICs.
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Figure 3: Cumulative #Factor Discovery
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Note. The figure provides time series plots for the cumulative number of factors introduced in the literature and

chosen by the model between 1994 to 2016. In particular, the solid line reports the cumulative number of factors in our

data library, based on the year in which they were introduced. The dashed blue and black lines report the cumulative

number of significant factors by our inference procedure, using a critical value for the t-stat of 2 and 3, respectively.

The dotted line represents the total number of factors selected by our model-selection procedure, and the blue dotted

line reports the selected factors that are statistically significant.
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Appendix A Technical Details

A.1 Notation

We summarize the notation used throughout. Let ei be a vector with 1 in the ith entry and 0

elsewhere, whose dimension depends on the context. Let ιk denote a k-dimensional vector with all

entries being 1. We use a∨b to denote the max of a and b, and a∧b as their min for any scalars a and

b. We also use the notation a . b to denote a ≤ Kb for some constant K > 0; and a .p b to denote

a = Op(b). For any time series of vectors {at}Tt=1, we denote ā = T−1
∑T

t=1 at. In addition, we write

āt = at−ā. We use the capital letter A to denote the matrix (a1 : a2 : . . . : aT ), and write Ā = A−ιᵀT ā
correspondingly. We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of

A. We use ‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the operator norm

(or L2 norm), and the Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |, maxi
∑

j |aij |,√
λmax(AᵀA), and

√
Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij | to denote the L∞

norm of A on the vector space. When a is a vector, both ‖a‖ and ‖a‖F are equal to its Euclidean

norm. We use ‖a‖0 to denote
∑

i 1{ai 6=0}. We also denote Supp(a) = {i : ai 6= 0}. We write

the projection operator with respect to a matrix A as PA = A(AᵀA)−1Aᵀ, and the corresponding

annihilator as MA = I− PA, where I is the identity matrix whose size depends on the context. For

a set of indices I, let A[I] denote a sub-matrix of A, which contains all columns indexed in I.

A.2 Technical Assumptions

Assumption A.1 (Sparsity). ‖λh‖0 ≤ s, ‖χj,·‖0 ≤ s, ‖ηj,·‖0 ≤ s, 1 ≤ j ≤ d, for some s such that

sn−1 → 0.

Definition 1 (LASSO and Post-LASSO Estimators). We consider a generic linear regression prob-

lem with sparse coefficients:

Y = Xβ + ε, subject to ‖β‖0 ≤ s,

where Y is a n × 1 vector, X is a n × p matrix, β is p × 1 vector of parameters. We define the

LASSO estimator as

β = arg min
β

{
n−1 ‖Y −Xβ‖2 + n−1τ ‖β‖1

}
.

We define the Post-LASSO estimator β̃
Î

as

β̃
Î

= arg min
β

{
n−1 ‖Y −Xβ‖2 : βj = 0, j /∈ Î

}
,

where Î is the set of indices of variables selected by a first-step LASSO, that is, Î = Supp(β).
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We adopt a high-level assumption on the model selection properties of LASSO and the prediction

error bounds of the Post-LASSO estimators in (7) and (8). Belloni and Chernozhukov (2013) provide

more primitive conditions for these bounds to hold.

Assumption A.2 (Properties of Post-LASSO Estimators). The Post-LASSO estimators in (7) and

(8) satisfy the following properties:

1. ŝ = |Î1
⋃
Î2| .p s.

2. Moreover, if τ0 ≥ 2c
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
, for some c > 1, then

n−1/2
∥∥∥ιn(γ̃

Î1
− γ̆0) + Ĉh(λ̃

Î1
− λ̆h)

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2 + τ0s

1/2n−1, (A.1)

where γ̆0 = γ0 + ξᵀλg and λ̆h = χᵀλg + λh are the true parameter values given in (2) and (6).

If τj ≥ 2cj

∥∥∥eᵀjCᵀ
e (ιn : Ĉh)

∥∥∥
1
, for some cj > 1 and j = 1, 2, . . . , d, then

n−1/2
∥∥∥ιn(ξ̃

Î2
− ξ)ᵀ + Ĉh(χ̃

Î2
− χ)ᵀ

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2 + ‖τ‖MAX s

1/2n−1, (A.2)

where τ = (τ1, τ2, . . . , τd)
ᵀ, ξ and χ are the true parameter values given in (6).

Assumption A.2 gives a probabilistic upper bound on ŝ. The prediction error bounds in (A.1)

and (A.2) are non-standard, because the regressors here are estimated. We provide a sketch of the

proof for (A.1) in Appendix A.4, for which we need the following sparse eigenvalues assumption. The

proof of (A.2) is similar and simpler. Our theoretical result below would also hold if other model

selection procedures are employed, provided that they obey similar properties in Assumption A.2.

Assumption A.3 (Sparse Eigenvalues). There exist K1,K2 > 0 and a sequence ln →∞, such that

with probability approaching 1,

K1 ≤ φmin(lns)
[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

]
≤ φmax(lns)

[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

]
≤ K2,

where we denote

φmin(k)[A] = min
1≤‖v‖0≤k

vᵀAv

‖v‖2
, and φmax(k)[A] = max

1≤‖v‖0≤k

vᵀAv

‖v‖2
.

Assumption A.3 resembles one of the sufficient conditions that lead to desirable statistical

properties of LASSO, which has been adopted by, e.g., Belloni et al. (2014b). It implies the restricted

eigenvalue condition proposed by Bickel et al. (2009).

Assumption A.4 (Large Deviation Bounds). The stochastic discount factor, the returns, and the

factors satisfy

‖ā‖MAX .p T
−1/2(log(n ∨ p ∨ T ))1/2, where a ∈ {m, v, z, u}. (A.3)∥∥T−1ĀB̄ᵀ − Cov(at, bt)

∥∥
MAX

.p T
−1/2(log(n ∨ p ∨ T ))1/2, where A,B ∈ {M,V,Z, U}. (A.4)
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Assumption A.4 imposes high-level assumptions on the large deviation type bounds, which can

be verified using the same arguments as in Fan et al. (2011) under stationarity, ergodicity, strong

mixing, and exponential-type tail conditions.

Next, we impose additional uniform bounds that impose restrictions on the cross-sectional

dependence of the “residuals” in the covariance projection (6). Similar assumptions on factor loadings

are employed by Giglio and Xiu (2016).

Assumption A.5 (“Moment” Conditions). The following restrictions on the n× d matrix Ce hold:

‖Ce‖MAX . 1, ‖Cᵀ
e ιn‖MAX . n1/2, ‖Cᵀ

eCh‖MAX . n1/2, (A.5)

‖Cᵀ
e ū‖MAX .p n

1/2T−1/2,
∥∥Cᵀ

e Ū V̄
ᵀ
∥∥
MAX

.p n
1/2T 1/2, (A.6)

λmin(n−1Cᵀ
eCe) ≥ K, ‖Cᵀ

e (βgη + βh)‖∞ . sn1/2, ‖βh‖∞ . s. (A.7)

In addition, for a ∈ {m, v, z, u}, it holds that

‖Σa‖MAX . 1, ‖Ca‖MAX . 1. (A.8)

Finally, we impose a joint central limit theorem for (zt, λ
ᵀvtzt) = (zt, (1 − γ0mt)zt). This can

be verified by the standard central limit theory for dependent stochastic processes, if more primitive

assumptions are satisfied, see, e.g., White (2000).

Assumption A.6 (CLT). The following results hold as T →∞:

T 1/2

(
z̄

−T−1γ0M̄Z̄ − Σzλg

)
L−→ N

((
0

0

)
,

(
Π11 Π12

Πᵀ
12 Π22

))
,

where Π11, Π12, and Π22 are given by

Π11 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E(zsz
ᵀ
t ),

Π12 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E (λᵀvszsz
ᵀ
t ) ,

Π22 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E (λᵀvsλ
ᵀvtzsz

ᵀ
t ) .

Assumption A.7 (Selection for the Asymptotic Variance Estimator). The Post-LASSO estimator

η̃
Ĩ

satisfies the usual bounds. That is, if τ̄j ≥ 2c̄j ‖HZ‖∞, for some c̄j > 1, j = 1, 2, . . . , d, then we

have ∥∥(η̃
Ĩ
− η)H

∥∥ .p s
1/2(log(p ∨ T ))1/2, and

∥∥η̃
Ĩ
− η
∥∥ .p s

1/2T−1/2(log(p ∨ T ))1/2.
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A.3 Proof of Main Theorems

Proof of Theorem 1. The estimator of λg can be written in closed-form as

λ̂g =
(
Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

)−1 (
Ĉᵀ
gM(ιn:Ĉh[Î])

r̄
)
. (A.9)

Moreover, by (2) and (5), we can relate Cg and Ch to βg and βh:

Cg = Chη
ᵀ + Cz, where Ch = (βgη + βh)Σh, Cz = βgΣz. (A.10)

Using (3), (5), (A.10), and the fact that

Ĉg − Cg = (Ĉh − Ch)ηᵀ + (Ĉz − Cz),

Ĉz − Cz = βg
(
T−1Z̄Z̄ᵀ − Σz

)
+ T−1Ū Z̄ᵀ + T−1 (βgη + βh) H̄Z̄ᵀ,

Ĉh − Ch = (βgη + βh)
(
T−1H̄H̄ᵀ − Σh

)
+ T−1ŪH̄ᵀ + T−1βgZ̄H̄

ᵀ,

we obtain the following decomposition:

T 1/2(λ̂g − λg)

=
(
n−1Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉg

)−1
n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])

(
(Cg − Ĉg)λg + Chλh + βg z̄ + ((βgη + βh)h̄+ ū)

)
=T 1/2Σ−1z

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))
+
(
n−1Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉg

)−1 (
n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)
+n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )×

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))
−n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)
+n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

)
.

We first analyze the leading term. Note that γ0M̄ = −V̄ ᵀλ, by Assumption A.6 and applying the

Delta method, we have

T 1/2
(
Σ−1z z̄ − Σ−1z

(
−T−1γ0Z̄M̄ − Σzλg

))
L−→ N

(
0, lim
T→∞

1

T

T∑
t=1

T∑
s=1

E
(
(1− λᵀvt)(1− λᵀvs)Σ−1z ztz

ᵀ
sΣ−1z

))
. (A.11)

Next, we show that the reminder terms are of a smaller order. By (A.42), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ .p s(n
−1/2 + T−1/2) log(n ∨ p ∨ T ).

By (A.27), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
2(n−1T 1/2 + T−1/2) log(n ∨ p ∨ T ).
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By (A.40), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥
.ps

2(n−1/2 + T−1/2) log(n ∨ p ∨ T ).

By Assumption A.4, (A.11), and (A.35), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈzΣ−1z )

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))∥∥∥
≤n−1T 1/2

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(βg − ĈzΣ−1z )
∥∥∥∥∥z̄ − (T−1Z̄V̄ ᵀλ− Σzλg

)∥∥
.ps(n

−1/2 + T−1/2) log(n ∨ p ∨ T ).

This concludes the proof.

Proof of Theorem 2. By the identical argument in the proof of Theorem 2 of Newey and West (1987),

we have

1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (ztz
ᵀ
r + zrz

ᵀ
t )

p−→ ΣzΠΣz.

So applying the continuous mapping theorem, it is sufficient to show that

Σ̂z
p−→ Σz, (A.12)

Π̃− 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (ztz
ᵀ
r + zrz

ᵀ
t )

p−→ 0, (A.13)

where

Qtr =

(
1− |r − t|

q + 1

)
1{|t−r|≤q}, Π̃ = Σ̂zΠ̂Σ̂z.

To prove (A.15), we note that by Assumptions A.4 and A.7, we have∥∥∥Σ̂z − Σz

∥∥∥
MAX

.T−1/2
∥∥(η̃

Ĩ
− η)H

∥∥ ‖Z‖MAX + T−1
∥∥(η̃

Ĩ
− η)H

∥∥2 +
∥∥T−1ZZᵀ − Σz

∥∥
MAX

.ps
1/2T−1/2(log(p ∨ T ))1/2 ‖Z‖MAX + sT−1 log(p ∨ T ) + T−1/2(log(n ∨ p ∨ T ))1/2

=op(1). (A.14)

As to (A.13), we can decompose its left-hand side as

1

T

T∑
t=1

T∑
r=1

Qtr(λ̂− λ)ᵀvt(1− λ̂ᵀvr) (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t ) (A.15)
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+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(λ̂− λ)ᵀvr (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t ) (A.16)

+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) ((ẑt − zt) ẑᵀr + (ẑr − zr) ẑᵀt ) (A.17)

+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (zt (ẑr − zr)ᵀ + zr (ẑt − zt)ᵀ) . (A.18)

Analyzing each of these terms, we can obtain that∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(λ̂− λ)ᵀvt(1− λ̂ᵀvr) (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t )

∥∥∥∥∥
MAX

.qT−1
∥∥∥Ẑ∥∥∥∥∥∥ιᵀT − λ̂ᵀV ∥∥∥∥∥∥(λ̂− λ)ᵀV

∥∥∥
MAX

∥∥∥Ẑ∥∥∥
MAX

.p qs
1/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(λ̂− λ)ᵀvr (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t )

∥∥∥∥∥
MAX

.qT−1
∥∥ιᵀT − λᵀV ∥∥∥∥∥Ẑ∥∥∥∥∥∥(λ̂− λ)ᵀV

∥∥∥
MAX

∥∥∥Ẑ∥∥∥
MAX

.p qs
1/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) ((ẑt − zt) ẑᵀr + (ẑr − zr) ẑᵀt )

∥∥∥∥∥
MAX

.qT−1
∥∥ιᵀT − λᵀV ∥∥ ‖(η̂ − η)H‖

∥∥∥Ẑ∥∥∥
MAX

∥∥ιᵀT − λᵀV ∥∥MAX

.pqs
3/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,

where we use∥∥ιᵀT − λᵀV ∥∥ . T 1/2 +
∥∥M̄∥∥+ ‖λᵀv̄‖ .p T

1/2,∥∥ιᵀT − λᵀV ∥∥MAX
. 1 + ‖λᵀV ‖MAX . s ‖V ‖MAX ,∥∥∥ιᵀT − λ̂ᵀV ∥∥∥ ≤ ∥∥ιᵀT − λᵀV ∥∥+

∥∥∥(λ̂− λ)ᵀV
∥∥∥ .p T

1/2 +
∥∥∥λ̂− λ∥∥∥ ‖V ‖ .p T

1/2,∥∥∥Ẑ∥∥∥ . T 1/2
∥∥∥Σ̂z

∥∥∥1/2 .p T
1/2 ‖Σz‖1/2 . T 1/2,∥∥∥(λ̂− λ)ᵀV

∥∥∥
MAX

≤
∥∥∥λ̂− λ∥∥∥

∞
‖V ‖MAX ≤

∥∥∥λ̂− λ∥∥∥ ‖V ‖MAX .p s
1/2(T−1/2 + n−1/2) ‖V ‖MAX ,∥∥∥Ẑ∥∥∥

MAX
≤ ‖(η̂ − η)H‖+ ‖Z‖MAX .p ‖Z‖MAX ,

which hold by (A.14), Assumption A.4, and Lemma 7. This concludes the proof.

A.4 Proof of Lemmas

Proof of (A.1). We provide a sketch of the proof, as they are identical to Belloni and Chernozhukov

(2013). With respect to the optimization problem (7), we define

Q(γ, λ) = n−1
∥∥∥r̄ − ιnγ − Ĉhλ∥∥∥2 .
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We denote the solution to this problem as γ̃ and λ̃. Let δ = λ̃− λ̆h. Note by (5) and (2), we have

E(rt) = ιnγ̆0 + Chλ̆h + Ceλg, and r̄ = E(rt) + βg ḡ + βhh̄+ ū.

By direct calculations, we have

Q(γ̃, λ̃)−Q(γ̆0, λ̆h)− n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥2
=− 2n−1

(
r̄ − ιnγ̆0 − Ĉhλ̆h

)ᵀ (
ιn(γ̃ − γ̆0) + Ĉhδ

)
=− 2n−1

(
βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h + Ceλg

)ᵀ (
ιn(γ̃ − γ̆0) + Ĉhδ

)
≥− 2n−1

∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

− 2n−1
∥∥∥(Ceλg)

ᵀ (ιn : Ĉh)
∥∥∥
1
‖(γ̃ − γ̆0 : δᵀ)ᵀ‖1

≥− 2n−1
∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

− τ0K−1n−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1) ,

where I is the set of non-zeros in λ̆h, Ic is its complement, and δI is a sub-vector of δ with all entries

taken from I.

On the other hand, by definition of γ̃ and λ̃, we have

Q(γ̃, λ̃)−Q(γ̆0, λ̆h) ≤τ0n−1
(∥∥∥(γ̆0 : λ̆ᵀh)ᵀ

∥∥∥
1
−
∥∥∥(γ̃ : λ̃ᵀ)ᵀ

∥∥∥
1

)
≤τ0n−1(|γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1).

Therefore, we obtain

n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥2 − τ0c−1n−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1)

− 2n−1
∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

≤τ0n−1(|γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1), (A.19)

where we use the fact that

τ0 ≥ 2c
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
.

If it holds that

n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥− 2n−1
∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥ < 0,

we can establish that

n−1/2
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2,
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where we use the fact that

n−1/2 ‖βg ḡ‖ . ‖βg‖MAX ‖ḡ‖MAX .p T
−1/2, (A.20)

n−1/2 ‖ū‖ . ‖ū‖MAX .p T
−1/2(log(n ∨ p ∨ T ))1/2, (A.21)

n−1/2
∥∥βhh̄∥∥ ≤‖βh‖∞ ∥∥h̄∥∥MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2, (A.22)

n−1/2
∥∥∥(Ch − Ĉh)λ̆h

∥∥∥ .
∥∥∥Ch − Ĉh∥∥∥

MAX

∥∥∥λ̆h∥∥∥
1
.p sT

−1/2(log(n ∨ p ∨ T ))1/2. (A.23)

Otherwise, from (A.19) it follows that

−c−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1) ≤ |γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1 ,

which leads to, writing c̄ = (c+ 1)(c− 1)−1,

‖δIc‖ ≤ c̄(|γ̃ − γ̆0|+ ‖δI‖1).

Then by (A.19) again as well as the restricted eigenvalue condition in Belloni and Chernozhukov

(2013), we obtain∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥2 − 2

∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

≤(1 + c−1)τ0(|γ̃ − γ̆0|+ ‖δI‖1) . τ0s
1/2n−1/2

∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥ .

Therefore, we have

n−1/2
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥ .n−1/2
∥∥∥βg ḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥+ τ0s
1/2n−1

.psT
−1/2(log(n ∨ p ∨ T ))1/2 + τ0s

1/2n−1.

The Post-LASSO estimator converges at the same rate following the same arguments as in Belloni

and Chernozhukov (2013).

Lemma 1. Under Assumptions A.1, A.2, A.4, A.5, we have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥ .ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.24)

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥ .ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.25)

Proof of Lemma 1. Using the fact that Î2 ⊆ Î and by (A.2), we have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥ =n−1/2

∥∥∥M(ιn:Ĉh[Î])
(Ĉhχ

ᵀ + ιnξ
ᵀ)
∥∥∥ ≤ n−1/2 ∥∥∥M(ιn:Ĉh[Î2])

(Ĉhχ
ᵀ + ιnξ

ᵀ))
∥∥∥

≤n−1/2
∥∥∥ιn(ξ − ξ̃

Î2
)ᵀ + Ĉhχ

ᵀ − Ĉhχ̃ᵀ

Î2

∥∥∥
.psT

−1/2(log(n ∨ p ∨ T ))1/2 + ‖τ‖MAX s
1/2n−1.
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Since by Assumptions A.4 and A.5, our choice of τ satisfies:

n−1 ‖τ‖MAX .n−1 max
1≤j≤d

∥∥∥eᵀjCᵀ
e Ĉh

∥∥∥
1
. n−1 ‖Cᵀ

eCh‖MAX + n−1
∥∥∥Cᵀ

e (Ĉh − Ch)
∥∥∥
MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.26)

This concludes the proof of (A.24).

Similarly, to prove (A.25), by (A.1) we have

n−1/2
∥∥∥M(ιn:Ĉh[Î1])

(
Ĉhλ̆h + ιnγ̆0

)∥∥∥
≤n−1/2

∥∥∥(ιn : Ĉh)(γ̃
Î1
− γ̆0 : (λ̃

Î1
− λ̆h)ᵀ)ᵀ

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2 + τ0s

1/2n−1.

Because we can select τ0 that satisfies

n−1τ0 ≤n−1
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
≤ n−1 |λᵀgCᵀ

e ιn|+ n−1
∥∥∥λᵀgCᵀ

e Ĉh

∥∥∥
MAX

.n−1 ‖Ceιn‖MAX + ‖Ce‖MAX

∥∥∥Ĉh − Ch∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

hence it follows that

n−1/2
∥∥∥M(ιn:Ĉh[Î1])

(
Ĉh(λh + χᵀλg) + ιnγ0

)∥∥∥ .p s(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

By the triangle inequality and M
(ιn:Ĉh[Î1])

ιn = 0, we have∥∥∥M(ιn:Ĉh[Î1])
Ĉhλh

∥∥∥ ≤ ∥∥∥M(ιn:Ĉh[Î1])

(
Ĉh(λh + χᵀλg) + ιnγ0

)∥∥∥+
∥∥∥M(ιn:Ĉh[Î1])

Ĉhχ
ᵀ
∥∥∥ ‖λg‖ ,

which, combined with (A.24) and ‖λg‖ . 1, lead to the conclusion.

Lemma 2. Under Assumptions A.1, A.2, A.3, A.4, A.5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
2(n−1 + T−1) log(n ∨ p ∨ T ). (A.27)

Proof of Lemma 2 . We note by (6) that

Ĉg = Ĉhχ
ᵀ + Ĉg − Cg + ιnξ

ᵀ + (Ch − Ĉh)χᵀ + Ce, (A.28)

thereby it follows

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ ≤n−1 ∥∥∥χĈᵀ
hM(ιn:Ĉh[Î])

Ĉhλh

∥∥∥+ n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥
+ n−1

∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM
(ιn:Ĉh[Î])

Ĉhλh

∥∥∥ .
On the one hand, by Lemma 1, we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ ≤n−1/2 ∥∥∥M(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥n−1/2 ∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥
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.ps
2(n−1 + T−1) log(n ∨ p ∨ T ). (A.29)

On the other hand, note that

M
(ιn:Ĉh[Î])

Ĉhλh =(ιnγ0 + Ĉhλh)− (ιn : Ĉh)(γ̂0 : λ̂ᵀh)ᵀ = (ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)ᵀ,

where (γ̂0 : λ̂ᵀh)ᵀ = arg minγ,λ{ιnγ0 + Ĉhλh − ιnγ − Ĉhλ : λj = 0, j ∈ Îc}. By Assumption A.3, we

have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥ =n−1/2
∥∥∥(ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂

ᵀ
h)ᵀ
∥∥∥

≥φ1/2min(s+ ŝ+ 1)
[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

] ∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)
∥∥∥

&
∥∥∥(γ0 − γ̂0 : λᵀh − λ̂

ᵀ
h)
∥∥∥ ,

hence it follows from (A.25) that∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.30)

Using this, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ =n−1
∥∥∥Cᵀ

e (ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)ᵀ
∥∥∥

.n−1
∥∥∥Cᵀ

e (ιn : Ĉh)
∥∥∥
MAX

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)ᵀ
∥∥∥
1
. (A.31)

Using (A.5) and Assumption A.4, it follows that

n−1
∥∥∥Cᵀ

e (ιn : Ĉh)
∥∥∥
MAX

≤n−1
∥∥∥Cᵀ

e (Ĉh − Ch)
∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX + n−1 ‖Cᵀ

e ιn‖MAX

. ‖Ce‖MAX

∥∥∥Ĉh − Ch∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX + n−1 ‖Cᵀ

e ιn‖MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.32)

Moreover, since by sparsity of λh and λ̂h, we have∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)ᵀ
∥∥∥
1
≤ (s+ ŝ+ 1)1/2

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)ᵀ
∥∥∥ .

Combining (A.30), (A.31), and (A.32), we obtain

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
3/2(n−1 + T−1) log(n ∨ p ∨ T ). (A.33)

Finally, by (A.25) we have

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM

(ιn:Ĉh[Î])
Ĉhλh

∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥
MAX

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥
.ps

2(n−1/2T−1/2 + T−1)(log(n ∨ p ∨ T ))1/2.

The above estimate, along with (A.33) and (A.29), conclude the proof of (A.27).
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Lemma 3. Under Assumptions A.1, A.2, A.3, A.4, A.5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.34)

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )

∥∥∥ .p s(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.35)

Proof of Lemma 3. (i) By (6), we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1 ∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥+ n−1

∥∥∥χĈᵀ
hM(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥

+ n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
M

(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .

Moreover, by (A.24), we obtain

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1/2 ∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

∥∥∥n−1/2 ‖Chηᵀ‖
.ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2, (A.36)

where we use the fact that Cg = Chη
ᵀ + Cz, and that

n−1/2 ‖Chηᵀ‖ . ‖Chηᵀ‖MAX . ‖Cg‖MAX + ‖Cz‖MAX . 1.

In addition, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1 ‖Cᵀ

eChη
ᵀ‖+ n−1

∥∥∥Cᵀ
eP(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥ .

To bound the first term, we have

n−1 ‖Cᵀ
eChη

ᵀ‖ . n−1 ‖Cᵀ
eCh‖MAX ‖η‖∞ .p sn

−1/2(log(n ∨ p ∨ T ))1/2.

As to the second term, using (A.32) we obtain

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥

=n−1
∥∥∥∥Cᵀ

e (ιn : Ĉh[Î])
(

(ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1

(ιn : Ĉh[Î])ᵀChη
ᵀ

∥∥∥∥
≤n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥∥∥∥∥((ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1∥∥∥∥∥∥∥(ιn : Ĉh[Î])ᵀChη

ᵀ
∥∥∥

.(1 + ŝ)φ−1min(ŝ+ 1)
[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

]
n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

n−1
∥∥∥(ιn : Ĉh[Î])ᵀChη

ᵀ
∥∥∥
MAX

.ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

where we also use ‖Chη‖MAX ≤ ‖Cg‖MAX + ‖Cz‖MAX . 1, and

n−1
∥∥∥(ιn : Ĉh[Î])ᵀChη

∥∥∥
MAX

≤n−1
∥∥∥(ιn : Ĉh)ᵀChη

∥∥∥
MAX

.
∥∥∥(ιn : Ĉh)

∥∥∥
MAX

‖Chη‖MAX

.
(
‖(ιn : Ch)‖MAX +

∥∥∥Ĉh − Ch∥∥∥
MAX

)
‖Chη‖MAX .p 1.
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Therefore, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (A.37)

Similarly, because we have

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
Chη

ᵀ
∥∥∥

.
∥∥∥(Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

∥∥∥
MAX

‖Chηᵀ‖MAX .p sT
−1/2(log(n ∨ p ∨ T ))1/2.

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
(ιn : Ĉh[Î])

∥∥∥
MAX

≤K
∥∥∥(Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

∥∥∥
MAX

∥∥∥(ιn : Ĉh[Î])
∥∥∥
MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2,

it follows that

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
M

(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

which, along with (A.36) and (A.37), establish the first claim.

(ii) Next, by (5) we have

Ĉg = Ĉhη
ᵀ + Ĉz.

And recall that βg = CzΣ
−1
z , so we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )

∥∥∥
≤n−1

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(Cz − Ĉz)Σ−1z
∥∥∥+ n−1

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(Ĉh − Ch)ηᵀΣ−1z

∥∥∥
+ n−1

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

Chη
ᵀΣ−1z

∥∥∥ .
Using Assumption A.4 and

∥∥∥M(ιn:Ĉh[Î])

∥∥∥ ≤ 1, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(Cz − Ĉz)Σ−1z

∥∥∥
.
∥∥∥Ĉg∥∥∥

MAX

∥∥∥Cz − Ĉz∥∥∥
MAX

∥∥Σ−1z
∥∥ .p T

−1/2(log(n ∨ p ∨ T ))1/2, (A.38)

where we also use the fact that∥∥Σ−1z
∥∥ ≤ λ−1min(Σz) . 1,

∥∥∥Ĉg∥∥∥
MAX

≤
∥∥∥Ĉg − Cg∥∥∥

MAX
+ ‖Cg‖MAX . 1.

Similarly, we obtain

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(Ĉh − Ch)ηᵀΣ−1z

∥∥∥ .
∥∥∥Ĉg∥∥∥

MAX

∥∥∥Ĉh − Ch∥∥∥
MAX

‖η‖∞
∥∥Σ−1z

∥∥
.psT

−1/2(log(n ∨ p ∨ T ))1/2. (A.39)

Combining (A.38), (A.39), and (A.34) concludes the proof.
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Lemma 4. Under Assumptions A.1, A.2, A.3, A.4, A.5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥
.ps

2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ). (A.40)

Proof of Lemma 4. From (A.24) and Assumption A.4, it follows that

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥
≤n−1/2

∥∥∥χĈᵀ
hM(ιn:Ĉh[Î])

∥∥∥ ‖βgη + βh‖∞
(∥∥T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)

∥∥
MAX

+
∥∥h̄∥∥

MAX

)
.ps

2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ). (A.41)

Next, by triangle inequality, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄Z̄ᵀλg +

(
T−1H̄H̄ᵀ − Σh

)
(ηᵀλg + λh)− h̄

)∥∥∥
≤n−1

∥∥Cᵀ
e (βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥
+ n−1

∥∥∥Cᵀ
eP(ιn:Ĉh[Î])

(βgη + βh)
(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥ .
For the first term, by Assumption A.5 we have

n−1
∥∥Cᵀ

e (βgη + βh)
(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥
≤n−1 ‖Cᵀ

e (βgη + βh)‖∞
∥∥(T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥
MAX

.psn
−1/2T−1/2(log(n ∨ p ∨ T ))1/2.

For the second term, we use Assumptions A.1, A.3, A.4, and (A.32),

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥
.(1 + ŝ)φ−1min(ŝ+ 1)

[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

]
n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

×
∥∥∥(ιn : Ĉh[Î])ᵀ

∥∥∥
MAX

‖βgη + βh‖∞
∥∥T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

∥∥
MAX

.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ).

Finally, by Assumptions A.1 and A.4, we have

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM

(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

)∥∥∥
.
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀ

∥∥∥
MAX

‖βgη + βh‖∞
∥∥T−1H̄V̄ ᵀλ− Σh(ηᵀλg + λh)− h̄

∥∥
MAX

.ps
2T−1 log(n ∨ p ∨ T ).

The conclusion then follows from (A.28).
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Lemma 5. Under Assumptions A.1, A.2, A.3, A.4, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ .p s(n
−1/2T−1/2 + T−1) log(n ∨ p ∨ T ). (A.42)

Proof of Lemma 5. Note that by (A.24), we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ ≤n−1/2 ∥∥∥M(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥n−1/2 ∥∥ū− T−1Ū V̄ ᵀλ

∥∥
.ps(n

−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),

where we use the following estimates as a result of Assumptions A.1 and A.4:

n−1/2 ‖ū‖ . ‖ū‖MAX .p T
−1/2(log n ∨ p ∨ T )1/2,

n−1/2
∥∥T−1Ū V̄ ᵀλ

∥∥ .
∥∥T−1ŪM̄ᵀγ0

∥∥
MAX

.p T
−1/2(log(n ∨ p ∨ T ))1/2.

Moreover, by triangle inequality, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
≤n−1

∥∥Cᵀ
e

(
ū− T−1Ū V̄ ᵀλ

)∥∥+ n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
For the first term, we have

n−1
∥∥Cᵀ

e

(
ū− T−1Ū V̄ ᵀλ

)∥∥ ≤ n−1 ‖Cᵀ
e ū‖+ T−1n−1

∥∥Cᵀ
e Ū V̄

ᵀλ
∥∥ .p sn

−1/2T−1/2.

As to the second term, using Assumption A.3 and (A.32) we have

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
=n−1

∥∥∥∥Cᵀ
e (ιn : Ĉh[Î])

(
(ιn : Ĉh[Î])

ᵀ
(ιn : Ĉh[Î])

)−1
(ιn : Ĉh[Î])

ᵀ (
ū− T−1Ū V̄ ᵀλ

)∥∥∥∥
.sn−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

n−1
∥∥∥(ιn : Ĉh[Î])

ᵀ (
ū− T−1Ū V̄ ᵀλ

)∥∥∥
MAX

.ps(n
−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),

where we also use the following

n−1
∥∥∥(ιn : Ĉh)ᵀ

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
MAX

≤
(∥∥∥Ĉh − Ch∥∥∥

MAX
+ ‖(ιn : Ch)‖MAX

)∥∥ū− T−1Ū V̄ ᵀλ
∥∥
MAX

.pT
−1/2(log(n ∨ p ∨ T ))1/2.

Finally, we note that

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M

(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥
MAX

∥∥ū− T−1ŪM̄ᵀ
∥∥
MAX

.p sT
−1 log(n ∨ p ∨ T ).

This concludes the proof.
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Lemma 6. Under Assumptions A.1, A.2, A.3, A.4, A.5, we have∥∥∥∥n(Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

)−1∥∥∥∥ .p 1.

Proof of Lemma 6. Note that by (A.28), we have

Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

=Cᵀ
eM(ιn:Ĉh[Î])

Ce + Cᵀ
eM(ιn:Ĉh[Î])

Ĉhχ
ᵀ + χĈᵀ

hM(ιn:Ĉh[Î])
Ce + χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhχ

ᵀ

+ Cᵀ
eM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)
+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M

(ιn:Ĉh[Î])
Ce

+ χĈᵀ
hM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)
+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M

(ιn:Ĉh[Î])
Ĉhχ

ᵀ

+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M

(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)
There are 9 terms in total on the right-hand side. By (A.24), we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ce

∥∥∥ =n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥ . ‖Ce‖MAX n

−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥

.ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥ ≤n−1 ∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥2 .p s

2(n−1 + T−1) log(n ∨ p ∨ T ).

Also, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥ = n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)
M

(ιn:Ĉh[Î])
Ce

∥∥∥
. ‖Ce‖MAX

∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ
∥∥∥
MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2,

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥ = n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)
M

(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥

.n−1/2
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

∥∥∥∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ
∥∥∥
MAX

.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M

(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥2
MAX

.p s
2T−1 log(n ∨ p ∨ T ).

Finally, by (A.32) and Assumptions A.2 and A.3, we have

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
Ce

∥∥∥ =n−1
∥∥∥∥Cᵀ

e (ιn : Ĉh[Î])
(

(ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1

(ιn : Ĉh[Î])ᵀCe

∥∥∥∥
.sn−2

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥2
MAX

.p s(n
−1 + T−1) log(n ∨ p ∨ T ).

Hence, we obtain

n−1Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg = n−1Cᵀ
eCe + op(1).

The conclusion follows from (A.5) and Weyl inequalities.
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Lemma 7. Under Assumptions A.1, A.2, A.3, A.4, A.5, A.6, we have∥∥∥(γ̂0 : λ̂ᵀh)− (γ0 : λᵀh)
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Proof. It follows from (9) that

(γ̂0 : λ̂h[Î]ᵀ)ᵀ =
((
ιn : Ĉh[Î]

)ᵀ (
ιn : Ĉh[Î]

))−1 (
ιn : Ĉh[Î]

)ᵀ (
r̄ − Ĉgλ̂g

)
,

which implies that∥∥∥(γ̂0 : λ̂ᵀh)ᵀ − (γ0 : λᵀh)ᵀ
∥∥∥ ≤ ∥∥∥(γ̃0 : λ̃ᵀh)ᵀ − (γ̆0 : λ̆ᵀh)ᵀ

∥∥∥+
∥∥∥(ξ̃ : χ̃)ᵀλ̂g − (ξ : χ)ᵀλg

∥∥∥ ,
where

(γ̃0 : λ̃ᵀh)ᵀ = arg min
γ,λ

{∥∥∥r̄ − ιnγ − Ĉhλ∥∥∥ : λj = 0, j /∈ Î
}
,

(ξ̃j : χ̃j,·)
ᵀ = arg min

ξj ,χj,·

{∥∥∥Ĉg,·,j − ιnξj − Ĉhχᵀ
j,·

∥∥∥ : χj,k = 0, k /∈ Î
}
, j = 1, 2, . . . , d.

Moreover, because

M
(ιn:Ĉh[Î])

r̄ = ιnγ̆0 + Ĉhλ̆h − ιnγ̃0 − Ĉhλ̃h + (Ch − Ĉh)λ̆h + Ceλg + βg ḡ + βhh̄+ ū

we obtain, using Î1 ⊆ Î, (A.1), (A.5), (A.20) - (A.23), (A.26),

n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ

)ᵀ∥∥∥
≤n−1/2

∥∥∥M(ιn:Ĉh[Î1])
r̄
∥∥∥+ n−1/2

∥∥∥(Ch − Ĉh)λ̆h + Ceλg + βg ḡ + βhh̄+ ū
∥∥∥

≤n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃
Î1
− γ̆0 : (λ̃

Î1
− λ̆h)ᵀ

)ᵀ∥∥∥+ 2n−1/2
∥∥∥(Ch − Ĉh)λ̆h + Ceλg + βg ḡ + βhh̄+ ū

∥∥∥
.ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Since we have

n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ

)ᵀ∥∥∥
≥φ1/2min(1 + ŝ)

[
n−1(ιn : Ĉh)ᵀ(ιn : Ĉh)

] ∥∥∥(γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ
)∥∥∥ ,

it follows that ∥∥∥(γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ
)∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Similarly, we can obtain∥∥∥(ξ̃ − ξ : χ̃− χ
)∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Therefore, using this, as well as Assumption A.1 and Theorem 1, we obtain∥∥∥(ξ̃ : χ̃)ᵀλ̂g − (ξ : χ)ᵀλg

∥∥∥ ≤∥∥∥(ξ̃ − ξ : χ̃− χ)
∥∥∥∥∥∥λ̂g∥∥∥+ ‖(ξ : χ)‖

∥∥∥λ̂g − λg∥∥∥
.ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

This concludes the proof.
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